Limits...
Prostatic acid phosphatase is expressed in peptidergic and nonpeptidergic nociceptive neurons of mice and rats.

Taylor-Blake B, Zylka MJ - PLoS ONE (2010)

Bottom Line: Previously, we found that TMPase was molecularly identical to Prostatic acid phosphatase (PAP) using mice.Although PAP is found in peptidergic and nonpeptidergic neurons of mice and rats, the percentage of PAP+ neurons that express these markers differs between species.Collectively, our studies highlight similarities and differences in PAP localization within nociceptive neurons of mice and rats.

View Article: PubMed Central - PubMed

Affiliation: Department of Cell and Molecular Physiology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA.

ABSTRACT
Thiamine monophosphatase (TMPase, also known as Fluoride-resistant acid phosphatase or FRAP) is a classic histochemical marker of small- to medium-diameter dorsal root ganglia (DRG) neurons and has primarily been studied in the rat. Previously, we found that TMPase was molecularly identical to Prostatic acid phosphatase (PAP) using mice. In addition, PAP was expressed in a majority of nonpeptidergic, isolectin B4-binding (IB4+) nociceptive neurons and a subset of peptidergic, calcitonin gene-related peptide-containing (CGRP+) nociceptive neurons. At the time, we were unable to determine if PAP was present in rat DRG neurons because the antibody we used did not cross-react with PAP in rat tissues. In our present study, we generated a chicken polyclonal antibody against the secretory isoform of mouse PAP. This antibody detects mouse, rat and human PAP protein on western blots. Additionally, this antibody detects PAP in mouse and rat small- to medium-diameter DRG neurons and axon terminals in lamina II of spinal cord. In the rat, 92.5% of all PAP+ cells bind the nonpeptidergic marker IB4 and 31.8% of all PAP+ cells contain the peptidergic marker CGRP. Although PAP is found in peptidergic and nonpeptidergic neurons of mice and rats, the percentage of PAP+ neurons that express these markers differs between species. Moreover, PAP+ axon terminals in the rat partially overlap with Protein kinase Cgamma (PKCgamma+) interneurons in dorsal spinal cord whereas PAP+ axon terminals in the mouse terminate dorsal to PKCgamma+ interneurons. Collectively, our studies highlight similarities and differences in PAP localization within nociceptive neurons of mice and rats.

Show MeSH

Related in: MedlinePlus

Chicken antibody detects PAP in mouse DRG neurons and dorsal spinal cord.(A–D) Sections from mouse L4-L6 DRG and (E–L) lumbar spinal cord were stained with chicken anti-PAP antibodies (red) and with antibodies against various sensory neuron markers and spinal interneuron marker PKCγ (blue, green). (D, H, L) Merged images. All images were acquired by confocal microscopy. Scale bar in (D) 50 µm, (H) 100 µm.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2800773&req=5

pone-0008674-g002: Chicken antibody detects PAP in mouse DRG neurons and dorsal spinal cord.(A–D) Sections from mouse L4-L6 DRG and (E–L) lumbar spinal cord were stained with chicken anti-PAP antibodies (red) and with antibodies against various sensory neuron markers and spinal interneuron marker PKCγ (blue, green). (D, H, L) Merged images. All images were acquired by confocal microscopy. Scale bar in (D) 50 µm, (H) 100 µm.

Mentions: We previously found that PAP was co-localized in a majority of all IB4+ nonpeptidergic neurons and a subset of all CGRP+ peptidergic neurons in the mouse using the Biømeda antibody [17]. In addition, we found that PAP was extensively co-localized with IB4 in axon terminals, located in lamina II of dorsal spinal cord. To determine if our chicken antibody recognized PAP in a similar population of DRG neurons and axon terminals, we triple-immunostained mouse DRG and spinal cord with our chicken antibody and various markers (Figure 2). In mouse lumbar DRG, 66.6% of all PAP+ cells bound the nonpeptidergic marker IB4 whereas 9.6% of PAP+ cells contained the peptidergic marker CGRP+ (n = 1289 cells counted) (Figure 2A–D). Conversely, 83.7% of all IB4+ cells were PAP+ and 14.8% of CGRP+ cells were PAP+ (n = 1289 cells counted). In the mouse dorsal spinal cord, PAP immunostaining overlapped extensively with IB4 and was concentrated in axon terminals within lamina II (Figure 2E, F, H). In contrast, there was limited overlap between PAP and CGRP in lamina II (Figure 2E, G, H). PKCγ marks a class of interneurons in lamina IIinner and lamina III that are implicated in neuropathic pain mechanisms and the detection of innocuous stimuli [27], [28], [29], [30]. PAP axonal staining was dorsal to and largely non-overlapping with the band of PKCγ interneurons neurons (Figure 2I, K, L). As controls for the experiments described above, no immunostaining was observed in DRG neurons or spinal cord when using preimmune serum or when the chicken anti-PAP antibody was omitted (data not shown). Taken together, the cellular and axonal distribution of PAP, as revealed with our chicken antibody, was similar to our previous study with the Biømeda antibody [17]. These results indicated that our chicken antibody reliably detects PAP in mouse tissues.


Prostatic acid phosphatase is expressed in peptidergic and nonpeptidergic nociceptive neurons of mice and rats.

Taylor-Blake B, Zylka MJ - PLoS ONE (2010)

Chicken antibody detects PAP in mouse DRG neurons and dorsal spinal cord.(A–D) Sections from mouse L4-L6 DRG and (E–L) lumbar spinal cord were stained with chicken anti-PAP antibodies (red) and with antibodies against various sensory neuron markers and spinal interneuron marker PKCγ (blue, green). (D, H, L) Merged images. All images were acquired by confocal microscopy. Scale bar in (D) 50 µm, (H) 100 µm.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2800773&req=5

pone-0008674-g002: Chicken antibody detects PAP in mouse DRG neurons and dorsal spinal cord.(A–D) Sections from mouse L4-L6 DRG and (E–L) lumbar spinal cord were stained with chicken anti-PAP antibodies (red) and with antibodies against various sensory neuron markers and spinal interneuron marker PKCγ (blue, green). (D, H, L) Merged images. All images were acquired by confocal microscopy. Scale bar in (D) 50 µm, (H) 100 µm.
Mentions: We previously found that PAP was co-localized in a majority of all IB4+ nonpeptidergic neurons and a subset of all CGRP+ peptidergic neurons in the mouse using the Biømeda antibody [17]. In addition, we found that PAP was extensively co-localized with IB4 in axon terminals, located in lamina II of dorsal spinal cord. To determine if our chicken antibody recognized PAP in a similar population of DRG neurons and axon terminals, we triple-immunostained mouse DRG and spinal cord with our chicken antibody and various markers (Figure 2). In mouse lumbar DRG, 66.6% of all PAP+ cells bound the nonpeptidergic marker IB4 whereas 9.6% of PAP+ cells contained the peptidergic marker CGRP+ (n = 1289 cells counted) (Figure 2A–D). Conversely, 83.7% of all IB4+ cells were PAP+ and 14.8% of CGRP+ cells were PAP+ (n = 1289 cells counted). In the mouse dorsal spinal cord, PAP immunostaining overlapped extensively with IB4 and was concentrated in axon terminals within lamina II (Figure 2E, F, H). In contrast, there was limited overlap between PAP and CGRP in lamina II (Figure 2E, G, H). PKCγ marks a class of interneurons in lamina IIinner and lamina III that are implicated in neuropathic pain mechanisms and the detection of innocuous stimuli [27], [28], [29], [30]. PAP axonal staining was dorsal to and largely non-overlapping with the band of PKCγ interneurons neurons (Figure 2I, K, L). As controls for the experiments described above, no immunostaining was observed in DRG neurons or spinal cord when using preimmune serum or when the chicken anti-PAP antibody was omitted (data not shown). Taken together, the cellular and axonal distribution of PAP, as revealed with our chicken antibody, was similar to our previous study with the Biømeda antibody [17]. These results indicated that our chicken antibody reliably detects PAP in mouse tissues.

Bottom Line: Previously, we found that TMPase was molecularly identical to Prostatic acid phosphatase (PAP) using mice.Although PAP is found in peptidergic and nonpeptidergic neurons of mice and rats, the percentage of PAP+ neurons that express these markers differs between species.Collectively, our studies highlight similarities and differences in PAP localization within nociceptive neurons of mice and rats.

View Article: PubMed Central - PubMed

Affiliation: Department of Cell and Molecular Physiology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA.

ABSTRACT
Thiamine monophosphatase (TMPase, also known as Fluoride-resistant acid phosphatase or FRAP) is a classic histochemical marker of small- to medium-diameter dorsal root ganglia (DRG) neurons and has primarily been studied in the rat. Previously, we found that TMPase was molecularly identical to Prostatic acid phosphatase (PAP) using mice. In addition, PAP was expressed in a majority of nonpeptidergic, isolectin B4-binding (IB4+) nociceptive neurons and a subset of peptidergic, calcitonin gene-related peptide-containing (CGRP+) nociceptive neurons. At the time, we were unable to determine if PAP was present in rat DRG neurons because the antibody we used did not cross-react with PAP in rat tissues. In our present study, we generated a chicken polyclonal antibody against the secretory isoform of mouse PAP. This antibody detects mouse, rat and human PAP protein on western blots. Additionally, this antibody detects PAP in mouse and rat small- to medium-diameter DRG neurons and axon terminals in lamina II of spinal cord. In the rat, 92.5% of all PAP+ cells bind the nonpeptidergic marker IB4 and 31.8% of all PAP+ cells contain the peptidergic marker CGRP. Although PAP is found in peptidergic and nonpeptidergic neurons of mice and rats, the percentage of PAP+ neurons that express these markers differs between species. Moreover, PAP+ axon terminals in the rat partially overlap with Protein kinase Cgamma (PKCgamma+) interneurons in dorsal spinal cord whereas PAP+ axon terminals in the mouse terminate dorsal to PKCgamma+ interneurons. Collectively, our studies highlight similarities and differences in PAP localization within nociceptive neurons of mice and rats.

Show MeSH
Related in: MedlinePlus