Limits...
Perceiving pitch absolutely: comparing absolute and relative pitch possessors in a pitch memory task.

Schulze K, Gaab N, Schlaug G - BMC Neurosci (2009)

Bottom Line: We found a common activation pattern for both groups that included the superior temporal gyrus (STG) extending into the adjacent superior temporal sulcus (STS), the inferior parietal lobule (IPL) extending into the adjacent intraparietal sulcus (IPS), the posterior part of the inferior frontal gyrus (IFG), the pre-supplementary motor area (pre-SMA), and superior lateral cerebellar regions.Significant between-group differences were seen in the left STS during the early encoding phase of the pitch memory task (more activation in AP musicians) and in the right superior parietal lobule (SPL)/intraparietal sulcus (IPS) during the early perceptual phase (ITP 0-3) and later working memory/multimodal encoding phase of the pitch memory task (more activation in non-AP musicians).Non-significant between-group trends were seen in the posterior IFG (more in AP musicians) and the IPL (more anterior activations in the non-AP group and more posterior activations in the AP group).

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Neurology, Music and Neuroimaging Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA. kschulze@ich.ucl.ac.uk

ABSTRACT

Background: The perceptual-cognitive mechanisms and neural correlates of Absolute Pitch (AP) are not fully understood. The aim of this fMRI study was to examine the neural network underlying AP using a pitch memory experiment and contrasting two groups of musicians with each other, those that have AP and those that do not.

Results: We found a common activation pattern for both groups that included the superior temporal gyrus (STG) extending into the adjacent superior temporal sulcus (STS), the inferior parietal lobule (IPL) extending into the adjacent intraparietal sulcus (IPS), the posterior part of the inferior frontal gyrus (IFG), the pre-supplementary motor area (pre-SMA), and superior lateral cerebellar regions. Significant between-group differences were seen in the left STS during the early encoding phase of the pitch memory task (more activation in AP musicians) and in the right superior parietal lobule (SPL)/intraparietal sulcus (IPS) during the early perceptual phase (ITP 0-3) and later working memory/multimodal encoding phase of the pitch memory task (more activation in non-AP musicians). Non-significant between-group trends were seen in the posterior IFG (more in AP musicians) and the IPL (more anterior activations in the non-AP group and more posterior activations in the AP group).

Conclusion: Since the increased activation of the left STS in AP musicians was observed during the early perceptual encoding phase and since the STS has been shown to be involved in categorization tasks, its activation might suggest that AP musicians involve categorization regions in tonal tasks. The increased activation of the right SPL/IPS in non-AP musicians indicates either an increased use of regions that are part of a tonal working memory (WM) network, or the use of a multimodal encoding strategy such as the utilization of a visual-spatial mapping scheme (i.e., imagining notes on a staff or using a spatial coding for their relative pitch height) for pitch information.

Show MeSH
Time course of mean (SD) regional t-scores for the ROI in the left STS (error bars represent the between subject variability).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2749857&req=5

Figure 5: Time course of mean (SD) regional t-scores for the ROI in the left STS (error bars represent the between subject variability).

Mentions: Furthermore, a region of interest (ROI) analysis was conducted in order to investigate between-group differences. The cluster of voxels that showed a significant difference (after FDR correction for multiple comparisons, p < 0.05) for the early (ITP 0–3) and later processing stage (ITP 4–6) between groups were used to define two ROIs. One ROI was determined by the voxels that showed the strongest activation in the left STS during ITP 0–3 in AP musicians (left STS-ROI, Talairach coordinates: -61 -18 -4, cluster size = 25 voxels, black arrows in Fig. 4) and the second ROI was defined by the strongest activation in the right SPL/IPS region in the non-AP group during ITP 4–6 (right SPL/IPS-ROI, 40 -42 63, cluster size = 17 voxels, black arrows in Fig. 4). Mean regional t-values of these ROIs for every participant (AP and non-AP) and for each imaging time point (ITP 0 through ITP 6) were obtained to visualize the between-group differences over time in more detail (see Fig. 5 and 6).


Perceiving pitch absolutely: comparing absolute and relative pitch possessors in a pitch memory task.

Schulze K, Gaab N, Schlaug G - BMC Neurosci (2009)

Time course of mean (SD) regional t-scores for the ROI in the left STS (error bars represent the between subject variability).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2749857&req=5

Figure 5: Time course of mean (SD) regional t-scores for the ROI in the left STS (error bars represent the between subject variability).
Mentions: Furthermore, a region of interest (ROI) analysis was conducted in order to investigate between-group differences. The cluster of voxels that showed a significant difference (after FDR correction for multiple comparisons, p < 0.05) for the early (ITP 0–3) and later processing stage (ITP 4–6) between groups were used to define two ROIs. One ROI was determined by the voxels that showed the strongest activation in the left STS during ITP 0–3 in AP musicians (left STS-ROI, Talairach coordinates: -61 -18 -4, cluster size = 25 voxels, black arrows in Fig. 4) and the second ROI was defined by the strongest activation in the right SPL/IPS region in the non-AP group during ITP 4–6 (right SPL/IPS-ROI, 40 -42 63, cluster size = 17 voxels, black arrows in Fig. 4). Mean regional t-values of these ROIs for every participant (AP and non-AP) and for each imaging time point (ITP 0 through ITP 6) were obtained to visualize the between-group differences over time in more detail (see Fig. 5 and 6).

Bottom Line: We found a common activation pattern for both groups that included the superior temporal gyrus (STG) extending into the adjacent superior temporal sulcus (STS), the inferior parietal lobule (IPL) extending into the adjacent intraparietal sulcus (IPS), the posterior part of the inferior frontal gyrus (IFG), the pre-supplementary motor area (pre-SMA), and superior lateral cerebellar regions.Significant between-group differences were seen in the left STS during the early encoding phase of the pitch memory task (more activation in AP musicians) and in the right superior parietal lobule (SPL)/intraparietal sulcus (IPS) during the early perceptual phase (ITP 0-3) and later working memory/multimodal encoding phase of the pitch memory task (more activation in non-AP musicians).Non-significant between-group trends were seen in the posterior IFG (more in AP musicians) and the IPL (more anterior activations in the non-AP group and more posterior activations in the AP group).

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Neurology, Music and Neuroimaging Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA. kschulze@ich.ucl.ac.uk

ABSTRACT

Background: The perceptual-cognitive mechanisms and neural correlates of Absolute Pitch (AP) are not fully understood. The aim of this fMRI study was to examine the neural network underlying AP using a pitch memory experiment and contrasting two groups of musicians with each other, those that have AP and those that do not.

Results: We found a common activation pattern for both groups that included the superior temporal gyrus (STG) extending into the adjacent superior temporal sulcus (STS), the inferior parietal lobule (IPL) extending into the adjacent intraparietal sulcus (IPS), the posterior part of the inferior frontal gyrus (IFG), the pre-supplementary motor area (pre-SMA), and superior lateral cerebellar regions. Significant between-group differences were seen in the left STS during the early encoding phase of the pitch memory task (more activation in AP musicians) and in the right superior parietal lobule (SPL)/intraparietal sulcus (IPS) during the early perceptual phase (ITP 0-3) and later working memory/multimodal encoding phase of the pitch memory task (more activation in non-AP musicians). Non-significant between-group trends were seen in the posterior IFG (more in AP musicians) and the IPL (more anterior activations in the non-AP group and more posterior activations in the AP group).

Conclusion: Since the increased activation of the left STS in AP musicians was observed during the early perceptual encoding phase and since the STS has been shown to be involved in categorization tasks, its activation might suggest that AP musicians involve categorization regions in tonal tasks. The increased activation of the right SPL/IPS in non-AP musicians indicates either an increased use of regions that are part of a tonal working memory (WM) network, or the use of a multimodal encoding strategy such as the utilization of a visual-spatial mapping scheme (i.e., imagining notes on a staff or using a spatial coding for their relative pitch height) for pitch information.

Show MeSH