Limits...
Differential expression of follistatin and FLRG in human breast proliferative disorders.

Bloise E, Couto HL, Massai L, Ciarmela P, Mencarelli M, Borges LE, Muscettola M, Grasso G, Amaral VF, Cassali GD, Petraglia F, Reis FM - BMC Cancer (2009)

Bottom Line: The area and intensity of chromogen epithelial and stromal staining were analyzed semi-quantitatively.Follistatin staining was detected in the epithelial cytoplasm and nucleus in normal, benign and malignant breast tissue, with a stronger staining intensity in the peri-alveolar stromal cells of FIB at both mRNA and protein levels.Conversely, FLRG area and intensity of mRNA and protein staining were higher both in the cytoplasm and in the nucleus of IDC epithelial cells when compared to NB, while no significant changes in the stromal intensity were observed in all the proliferative diseases analyzed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departments of Obstetrics & Gynecology and Physiology, Federal University of Minas Gerais, Belo Horizonte, Brazil. bloise2@unisi.i

ABSTRACT

Background: Activins are growth factors acting on cell growth and differentiation. Activins are expressed in high grade breast tumors and they display an antiproliferative effect inducing G0/G1 cell cycle arrest in breast cancer cell lines. Follistatin and follistatin- related gene (FLRG) bind and neutralize activins. In order to establish if these activin binding proteins are involved in breast tumor progression, the present study evaluated follistatin and FLRG pattern of mRNA and protein expression in normal human breast tissue and in different breast proliferative diseases.

Methods: Paraffin embedded specimens of normal breast (NB - n = 8); florid hyperplasia without atypia (FH - n = 17); fibroadenoma (FIB - n = 17); ductal carcinoma in situ (DCIS - n = 10) and infiltrating ductal carcinoma (IDC - n = 15) were processed for follistatin and FLRG immunohistochemistry and in situ hybridization. The area and intensity of chromogen epithelial and stromal staining were analyzed semi-quantitatively.

Results: Follistatin and FLRG were expressed both in normal tissue and in all the breast diseases investigated. Follistatin staining was detected in the epithelial cytoplasm and nucleus in normal, benign and malignant breast tissue, with a stronger staining intensity in the peri-alveolar stromal cells of FIB at both mRNA and protein levels. Conversely, FLRG area and intensity of mRNA and protein staining were higher both in the cytoplasm and in the nucleus of IDC epithelial cells when compared to NB, while no significant changes in the stromal intensity were observed in all the proliferative diseases analyzed.

Conclusion: The present findings suggest a role for follistatin in breast benign disease, particularly in FIB, where its expression was increased in stromal cells. The up regulation of FLRG in IDC suggests a role for this protein in the progression of breast malignancy. As activin displays an anti-proliferative effect in human mammary cells, the present findings indicate that an increased FST and FLRG expression in breast proliferative diseases might counteract the anti-proliferative effects of activin in human breast cancer.

Show MeSH

Related in: MedlinePlus

FST diagrammatic presentation of semi-quantitative data for normal, benign and malignant breast tissue. FST expression was analyzed by in situ hybridization (A,C,E,G) and immunohistochemistry (B,D,F,H,) in the normal breast (NB), florid hyperplasia (FH), fibroadenoma (FIB), ductal carcinoma in situ (DCIS) and infiltrative ductal carcinoma (IDC). FST stromal intensity was stronger in the FIB; *p < 0.05 compared to NB (Kruskal-Wallis followed by Dunn's test).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2749060&req=5

Figure 2: FST diagrammatic presentation of semi-quantitative data for normal, benign and malignant breast tissue. FST expression was analyzed by in situ hybridization (A,C,E,G) and immunohistochemistry (B,D,F,H,) in the normal breast (NB), florid hyperplasia (FH), fibroadenoma (FIB), ductal carcinoma in situ (DCIS) and infiltrative ductal carcinoma (IDC). FST stromal intensity was stronger in the FIB; *p < 0.05 compared to NB (Kruskal-Wallis followed by Dunn's test).

Mentions: Clinical samples of the breast proliferative diseases were classified by the consultant pathologist as indicated in the Table 1. In order to determine cellular localization and the expressional profile of FST and FLRG in the normal breast and in different breast proliferative diseases, the tissue structures that were analyzed for mRNA and protein staining were: epithelial cytoplasm, epithelial nuclei and stromal tissue. Tissue localization and staining patterns of FST mRNA and protein are illustrated in Figure 1, with the corresponding semiquantitative analyses depicted in Figure 2. The same is shown for FLRG Figure 3 and Figure 4. FST and FLRG staining localization and patterning were similar for mRNA and protein, demonstrating that transcription and translation were in accordance, and no differences between the three diverse grades of DCIS and IDC analyzed were identified (data not shown).


Differential expression of follistatin and FLRG in human breast proliferative disorders.

Bloise E, Couto HL, Massai L, Ciarmela P, Mencarelli M, Borges LE, Muscettola M, Grasso G, Amaral VF, Cassali GD, Petraglia F, Reis FM - BMC Cancer (2009)

FST diagrammatic presentation of semi-quantitative data for normal, benign and malignant breast tissue. FST expression was analyzed by in situ hybridization (A,C,E,G) and immunohistochemistry (B,D,F,H,) in the normal breast (NB), florid hyperplasia (FH), fibroadenoma (FIB), ductal carcinoma in situ (DCIS) and infiltrative ductal carcinoma (IDC). FST stromal intensity was stronger in the FIB; *p < 0.05 compared to NB (Kruskal-Wallis followed by Dunn's test).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2749060&req=5

Figure 2: FST diagrammatic presentation of semi-quantitative data for normal, benign and malignant breast tissue. FST expression was analyzed by in situ hybridization (A,C,E,G) and immunohistochemistry (B,D,F,H,) in the normal breast (NB), florid hyperplasia (FH), fibroadenoma (FIB), ductal carcinoma in situ (DCIS) and infiltrative ductal carcinoma (IDC). FST stromal intensity was stronger in the FIB; *p < 0.05 compared to NB (Kruskal-Wallis followed by Dunn's test).
Mentions: Clinical samples of the breast proliferative diseases were classified by the consultant pathologist as indicated in the Table 1. In order to determine cellular localization and the expressional profile of FST and FLRG in the normal breast and in different breast proliferative diseases, the tissue structures that were analyzed for mRNA and protein staining were: epithelial cytoplasm, epithelial nuclei and stromal tissue. Tissue localization and staining patterns of FST mRNA and protein are illustrated in Figure 1, with the corresponding semiquantitative analyses depicted in Figure 2. The same is shown for FLRG Figure 3 and Figure 4. FST and FLRG staining localization and patterning were similar for mRNA and protein, demonstrating that transcription and translation were in accordance, and no differences between the three diverse grades of DCIS and IDC analyzed were identified (data not shown).

Bottom Line: The area and intensity of chromogen epithelial and stromal staining were analyzed semi-quantitatively.Follistatin staining was detected in the epithelial cytoplasm and nucleus in normal, benign and malignant breast tissue, with a stronger staining intensity in the peri-alveolar stromal cells of FIB at both mRNA and protein levels.Conversely, FLRG area and intensity of mRNA and protein staining were higher both in the cytoplasm and in the nucleus of IDC epithelial cells when compared to NB, while no significant changes in the stromal intensity were observed in all the proliferative diseases analyzed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departments of Obstetrics & Gynecology and Physiology, Federal University of Minas Gerais, Belo Horizonte, Brazil. bloise2@unisi.i

ABSTRACT

Background: Activins are growth factors acting on cell growth and differentiation. Activins are expressed in high grade breast tumors and they display an antiproliferative effect inducing G0/G1 cell cycle arrest in breast cancer cell lines. Follistatin and follistatin- related gene (FLRG) bind and neutralize activins. In order to establish if these activin binding proteins are involved in breast tumor progression, the present study evaluated follistatin and FLRG pattern of mRNA and protein expression in normal human breast tissue and in different breast proliferative diseases.

Methods: Paraffin embedded specimens of normal breast (NB - n = 8); florid hyperplasia without atypia (FH - n = 17); fibroadenoma (FIB - n = 17); ductal carcinoma in situ (DCIS - n = 10) and infiltrating ductal carcinoma (IDC - n = 15) were processed for follistatin and FLRG immunohistochemistry and in situ hybridization. The area and intensity of chromogen epithelial and stromal staining were analyzed semi-quantitatively.

Results: Follistatin and FLRG were expressed both in normal tissue and in all the breast diseases investigated. Follistatin staining was detected in the epithelial cytoplasm and nucleus in normal, benign and malignant breast tissue, with a stronger staining intensity in the peri-alveolar stromal cells of FIB at both mRNA and protein levels. Conversely, FLRG area and intensity of mRNA and protein staining were higher both in the cytoplasm and in the nucleus of IDC epithelial cells when compared to NB, while no significant changes in the stromal intensity were observed in all the proliferative diseases analyzed.

Conclusion: The present findings suggest a role for follistatin in breast benign disease, particularly in FIB, where its expression was increased in stromal cells. The up regulation of FLRG in IDC suggests a role for this protein in the progression of breast malignancy. As activin displays an anti-proliferative effect in human mammary cells, the present findings indicate that an increased FST and FLRG expression in breast proliferative diseases might counteract the anti-proliferative effects of activin in human breast cancer.

Show MeSH
Related in: MedlinePlus