Limits...
Increased host species diversity and decreased prevalence of Sin Nombre virus.

Dizney LJ, Ruedas LA - Emerging Infect. Dis. (2009)

Bottom Line: To test the dilution effect in another disease, we examined 17 ecological variables associated with prevalence of the directly transmitted Sin Nombre virus (genus Hantavirus, etiologic agent of hantavirus pulmonary syndrome) in its wildlife host, the deer mouse (Peromyscus maniculatus).Only species diversity was statistically linked to infection prevalence: as species diversity decreased, infection prevalence increased.The results suggest that species diversity affects disease emergence.

View Article: PubMed Central - PubMed

Affiliation: Portland State University, Portland, Oregon 97207-0751, USA. dizneyl@pdx.edu

ABSTRACT
Emerging outbreaks of zoonotic diseases are affecting humans at an alarming rate. Until the ecological factors associated with zoonoses are better understood, disease emergence will continue. For Lyme disease, disease suppression has been demonstrated by a dilution effect, whereby increasing species diversity decreases disease prevalence in host populations. To test the dilution effect in another disease, we examined 17 ecological variables associated with prevalence of the directly transmitted Sin Nombre virus (genus Hantavirus, etiologic agent of hantavirus pulmonary syndrome) in its wildlife host, the deer mouse (Peromyscus maniculatus). Only species diversity was statistically linked to infection prevalence: as species diversity decreased, infection prevalence increased. The increase was moderate, but prevalence increased exponentially at low levels of diversity, a phenomenon described as zoonotic release. The results suggest that species diversity affects disease emergence.

Show MeSH

Related in: MedlinePlus

Results of the nonlinear regression analysis between species diversity (expressed as Simpson diversity index, Ds) and Sin Nombre virus prevalence among deer mice (Peromyscus maniculatus) at each of 5 parks in Portland, Oregon, USA. The best fit model was of the form Y = x / (ax + b), R2 of 0.9994, p = 0.00001. The figure represents a summary of the results in that it shows the averages of all the seasons, in all years, in each park (indicated by circles). A regression using individual seasons and parks shows the same results.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2744248&req=5

Figure 1: Results of the nonlinear regression analysis between species diversity (expressed as Simpson diversity index, Ds) and Sin Nombre virus prevalence among deer mice (Peromyscus maniculatus) at each of 5 parks in Portland, Oregon, USA. The best fit model was of the form Y = x / (ax + b), R2 of 0.9994, p = 0.00001. The figure represents a summary of the results in that it shows the averages of all the seasons, in all years, in each park (indicated by circles). A regression using individual seasons and parks shows the same results.

Mentions: Using nonlinear regression, we found a significant negative relationship between infection prevalence and mammal species diversity. Infection prevalence increased as diversity decreased, up to an inflection point where the rate of infection increased exponentially (Figure). No regression model was able to account for the association between infection prevalence and density of deer mice, either alone or with species diversity in the model.


Increased host species diversity and decreased prevalence of Sin Nombre virus.

Dizney LJ, Ruedas LA - Emerging Infect. Dis. (2009)

Results of the nonlinear regression analysis between species diversity (expressed as Simpson diversity index, Ds) and Sin Nombre virus prevalence among deer mice (Peromyscus maniculatus) at each of 5 parks in Portland, Oregon, USA. The best fit model was of the form Y = x / (ax + b), R2 of 0.9994, p = 0.00001. The figure represents a summary of the results in that it shows the averages of all the seasons, in all years, in each park (indicated by circles). A regression using individual seasons and parks shows the same results.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2744248&req=5

Figure 1: Results of the nonlinear regression analysis between species diversity (expressed as Simpson diversity index, Ds) and Sin Nombre virus prevalence among deer mice (Peromyscus maniculatus) at each of 5 parks in Portland, Oregon, USA. The best fit model was of the form Y = x / (ax + b), R2 of 0.9994, p = 0.00001. The figure represents a summary of the results in that it shows the averages of all the seasons, in all years, in each park (indicated by circles). A regression using individual seasons and parks shows the same results.
Mentions: Using nonlinear regression, we found a significant negative relationship between infection prevalence and mammal species diversity. Infection prevalence increased as diversity decreased, up to an inflection point where the rate of infection increased exponentially (Figure). No regression model was able to account for the association between infection prevalence and density of deer mice, either alone or with species diversity in the model.

Bottom Line: To test the dilution effect in another disease, we examined 17 ecological variables associated with prevalence of the directly transmitted Sin Nombre virus (genus Hantavirus, etiologic agent of hantavirus pulmonary syndrome) in its wildlife host, the deer mouse (Peromyscus maniculatus).Only species diversity was statistically linked to infection prevalence: as species diversity decreased, infection prevalence increased.The results suggest that species diversity affects disease emergence.

View Article: PubMed Central - PubMed

Affiliation: Portland State University, Portland, Oregon 97207-0751, USA. dizneyl@pdx.edu

ABSTRACT
Emerging outbreaks of zoonotic diseases are affecting humans at an alarming rate. Until the ecological factors associated with zoonoses are better understood, disease emergence will continue. For Lyme disease, disease suppression has been demonstrated by a dilution effect, whereby increasing species diversity decreases disease prevalence in host populations. To test the dilution effect in another disease, we examined 17 ecological variables associated with prevalence of the directly transmitted Sin Nombre virus (genus Hantavirus, etiologic agent of hantavirus pulmonary syndrome) in its wildlife host, the deer mouse (Peromyscus maniculatus). Only species diversity was statistically linked to infection prevalence: as species diversity decreased, infection prevalence increased. The increase was moderate, but prevalence increased exponentially at low levels of diversity, a phenomenon described as zoonotic release. The results suggest that species diversity affects disease emergence.

Show MeSH
Related in: MedlinePlus