Limits...
Assessment of calvarial structure motion by MRI.

Crow WT, King HH, Patterson RM, Giuliano V - Osteopath Med Prim Care (2009)

Bottom Line: That the total intracranial area appeared to expand and recede was consistent with theory and prior studies suggestive of calvarial structure motion due to intracranial fluid volume changes.The use of MRI technology was able to demonstrate calvarial structure motion at a level exceeding the resolution threshold, and provides a means for further research on phenomena related to the cranial concept.It may be just a matter of time until increased resolution of MRI technology and image analysis provide the ability to examine more detailed areas of specific cranial bone motion.

View Article: PubMed Central - HTML - PubMed

Affiliation: The Osteopathic Research Center, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth Texas 76107 USA. hking@hsc.unt.edu.

ABSTRACT

Background: Practitioners of manual medicine/manual therapy (MM/MT) who utilize techniques thought to have some impact upon and move the solid structures of the human head have been criticized for lack of evidence of cranial bone motion. The present study utilized magnetic resonance imagery (MRI) technology to address the question of whether or not inherent (non-operator initiated) calvarial structure motion can be assessed.

Subjects: Twenty healthcare professionals, (physicians, nurses, medical students, pharmacists) between the ages of 24 and 52 were recruited. Seven females (ages 25-47, mean age 36.7) and 13 males (ages 25-53, mean age 31.2) volunteered. Technology: MRI scans were acquired at 450 ms per slice, in a 1.5 Tesla Signa Excite HD closed MRI system. The same scan prescription was repeated serially every 45 seconds to obtain eight serial slices for each subject. Image analysis was accomplished using ImageJ software (ImageJ 1.33 u National Institutes of Health, USA). Data from all eight images for each of the 20 subjects were analyzed to determine the two images with the largest differences in the parameters measured.

Results: Difference values for the measures of area, width, height, major axis, and feret were statistically different whereas the measures for perimeter and minor axis were not. However, only the difference values for area were both statistically different (p < 0.003) and exceeded the resolution threshold of 0.898 mm/pixel.

Discussion: The statistically significant difference value for area is suggestive of inherent motion in calvarial structures, and adds to the body of evidence supportive of biomechanically measurable calvarial structure motion in general. That the total intracranial area appeared to expand and recede was consistent with theory and prior studies suggestive of calvarial structure motion due to intracranial fluid volume changes.

Conclusion: The use of MRI technology was able to demonstrate calvarial structure motion at a level exceeding the resolution threshold, and provides a means for further research on phenomena related to the cranial concept. It may be just a matter of time until increased resolution of MRI technology and image analysis provide the ability to examine more detailed areas of specific cranial bone motion.

No MeSH data available.


Related in: MedlinePlus

Threshold image.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2743699&req=5

Figure 3: Threshold image.

Mentions: Two dimensional MRI scans, 23 centimeters high and 23 centimeters wide were obtained. Each 2D MRI image contains an array of 256 pixels wide by 256 pixels high. Thus, the image resolution in this case is 0.0898 cm/pixel (23 cm divided by 256 pixels and converted to mm is 0.898 mm/pixel). The images were saved in DICOM format and then converted in TIFFs for importation into ImageJ software (ImageJ 1.33 u National Institutes of Health, USA) for evaluation. The images were thresholded to interactively set lower and upper threshold values between 40 and 255. Figure 3 is representative of the image produced by this step of ImageJ analysis. Then the threshold image was analyzed using the analyze particles command in ImageJ. The minimum pixel size was set at 10 and maximum to 999999 in order to obtain the external contour of the image. Figure 4 is representative of the image produced by this step of ImageJ analysis. Area, perimeter, height and width of a bounding rectangle, major and minor axes of the best fit ellipse, and the feret diameter (longest distance between any two points along the boundary) were calculated using the analyze particles function in ImageJ. Data were imported into an Excel® spreadsheet for analysis. Data from all eight images for each of the 20 subjects were analyzed to determine the two images with the largest differences in the parameters measured. The differences between these two images were recorded and means determined for all 20 subjects.


Assessment of calvarial structure motion by MRI.

Crow WT, King HH, Patterson RM, Giuliano V - Osteopath Med Prim Care (2009)

Threshold image.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2743699&req=5

Figure 3: Threshold image.
Mentions: Two dimensional MRI scans, 23 centimeters high and 23 centimeters wide were obtained. Each 2D MRI image contains an array of 256 pixels wide by 256 pixels high. Thus, the image resolution in this case is 0.0898 cm/pixel (23 cm divided by 256 pixels and converted to mm is 0.898 mm/pixel). The images were saved in DICOM format and then converted in TIFFs for importation into ImageJ software (ImageJ 1.33 u National Institutes of Health, USA) for evaluation. The images were thresholded to interactively set lower and upper threshold values between 40 and 255. Figure 3 is representative of the image produced by this step of ImageJ analysis. Then the threshold image was analyzed using the analyze particles command in ImageJ. The minimum pixel size was set at 10 and maximum to 999999 in order to obtain the external contour of the image. Figure 4 is representative of the image produced by this step of ImageJ analysis. Area, perimeter, height and width of a bounding rectangle, major and minor axes of the best fit ellipse, and the feret diameter (longest distance between any two points along the boundary) were calculated using the analyze particles function in ImageJ. Data were imported into an Excel® spreadsheet for analysis. Data from all eight images for each of the 20 subjects were analyzed to determine the two images with the largest differences in the parameters measured. The differences between these two images were recorded and means determined for all 20 subjects.

Bottom Line: That the total intracranial area appeared to expand and recede was consistent with theory and prior studies suggestive of calvarial structure motion due to intracranial fluid volume changes.The use of MRI technology was able to demonstrate calvarial structure motion at a level exceeding the resolution threshold, and provides a means for further research on phenomena related to the cranial concept.It may be just a matter of time until increased resolution of MRI technology and image analysis provide the ability to examine more detailed areas of specific cranial bone motion.

View Article: PubMed Central - HTML - PubMed

Affiliation: The Osteopathic Research Center, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth Texas 76107 USA. hking@hsc.unt.edu.

ABSTRACT

Background: Practitioners of manual medicine/manual therapy (MM/MT) who utilize techniques thought to have some impact upon and move the solid structures of the human head have been criticized for lack of evidence of cranial bone motion. The present study utilized magnetic resonance imagery (MRI) technology to address the question of whether or not inherent (non-operator initiated) calvarial structure motion can be assessed.

Subjects: Twenty healthcare professionals, (physicians, nurses, medical students, pharmacists) between the ages of 24 and 52 were recruited. Seven females (ages 25-47, mean age 36.7) and 13 males (ages 25-53, mean age 31.2) volunteered. Technology: MRI scans were acquired at 450 ms per slice, in a 1.5 Tesla Signa Excite HD closed MRI system. The same scan prescription was repeated serially every 45 seconds to obtain eight serial slices for each subject. Image analysis was accomplished using ImageJ software (ImageJ 1.33 u National Institutes of Health, USA). Data from all eight images for each of the 20 subjects were analyzed to determine the two images with the largest differences in the parameters measured.

Results: Difference values for the measures of area, width, height, major axis, and feret were statistically different whereas the measures for perimeter and minor axis were not. However, only the difference values for area were both statistically different (p < 0.003) and exceeded the resolution threshold of 0.898 mm/pixel.

Discussion: The statistically significant difference value for area is suggestive of inherent motion in calvarial structures, and adds to the body of evidence supportive of biomechanically measurable calvarial structure motion in general. That the total intracranial area appeared to expand and recede was consistent with theory and prior studies suggestive of calvarial structure motion due to intracranial fluid volume changes.

Conclusion: The use of MRI technology was able to demonstrate calvarial structure motion at a level exceeding the resolution threshold, and provides a means for further research on phenomena related to the cranial concept. It may be just a matter of time until increased resolution of MRI technology and image analysis provide the ability to examine more detailed areas of specific cranial bone motion.

No MeSH data available.


Related in: MedlinePlus