Limits...
Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: involvement of CB2.

Olea-Herrero N, Vara D, Malagarie-Cazenave S, Díaz-Laviada I - Br. J. Cancer (2009)

Bottom Line: We found that the anandamide analogue, R(+)-Methanandamide (MET), as well as JWH-015, a synthetic CB(2) agonist, exerted anti-proliferative effects in PC-3 cells.Further analysing the mechanism of JWH-015-induced cell growth inhibition, we found that JWH-015 triggered a de novo synthesis of ceramide, which was involved in cannabinoid-induced cell death, insofar as blocking ceramide synthesis with Fumonisin B1 reduced cell death.In vivo treatment with JWH-015 caused a significant reduction in tumour growth in mice.

View Article: PubMed Central - PubMed

Affiliation: Department of Biochemistry and Molecular Biology, School of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain.

ABSTRACT

Background: We have previously shown that cannabinoids induce growth inhibition and apoptosis in prostate cancer PC-3 cells, which express high levels of cannabinoid receptor types 1 and 2 (CB(1) and CB(2)). In this study, we investigated the role of CB(2) receptor in the anti-proliferative action of cannabinoids and the signal transduction triggered by receptor ligation.

Methods: The human prostate cancer cell lines, namely PC-3, DU-145 and LNCaP, were used for this study. Cell proliferation was measured using MTT proliferation assay, [(3)H]-thymidine incorporation assay and cell-cycle study by flow cytometry. Ceramide quantification was performed using the DAG kinase method. The CB(2) receptor was silenced with specific small interfering RNA, and was blocked pharmacologically with SR 144528. In vivo studies were conducted by the induction of prostate xenograft tumours in nude mice.

Results: We found that the anandamide analogue, R(+)-Methanandamide (MET), as well as JWH-015, a synthetic CB(2) agonist, exerted anti-proliferative effects in PC-3 cells. R(+)-Methanandamide- and JWH-015-induced cell death was rescued by treatment with the CB(2) receptor antagonist, SR 144528. Downregulation of CB(2) expression reversed the effects of JWH-015, confirming the involvement of CB(2) in the pro-apoptotic effect of cannabinoids. Further analysing the mechanism of JWH-015-induced cell growth inhibition, we found that JWH-015 triggered a de novo synthesis of ceramide, which was involved in cannabinoid-induced cell death, insofar as blocking ceramide synthesis with Fumonisin B1 reduced cell death. Signalling pathways activated by JWH-015 included JNK (c-Jun N-terminal kinase) activation and Akt inhibition. In vivo treatment with JWH-015 caused a significant reduction in tumour growth in mice.

Conclusions: This study defines the involvement of CB(2)-mediated signalling in the in vivo and in vitro growth inhibition of prostate cancer cells and suggests that CB(2) agonists have potential therapeutic interest and deserve to be explored in the management of prostate cancer.

Show MeSH

Related in: MedlinePlus

In vivo anti-tumoural properties of JWH-015. Athymic nude mice were injected s.c. in the right flank with PC-3 cells and 4 weeks later (day 0) were treated for 15 days with vehicle (control), 1.5 mg kg−1 JWH-015 or 1.5 mg kg−1 JWH-015 plus 1.5 mg kg−1 SR2. Treatments were carried out by injections in the peritumoural area every day. Tumour volumes were measured daily. (A) The dorsal side of representative mice and dissected tumours after treatment. (B) Tumour growth curve after administration of vehicle (diamonds), JWH-015 (squares) or JWH-015+SR2 (triangles). Results represent the mean±s.e. of eight mice in each group. *P<0.01 vs control and #P<0.01 vs JWH-015, compared by Student's t-test.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2743360&req=5

fig8: In vivo anti-tumoural properties of JWH-015. Athymic nude mice were injected s.c. in the right flank with PC-3 cells and 4 weeks later (day 0) were treated for 15 days with vehicle (control), 1.5 mg kg−1 JWH-015 or 1.5 mg kg−1 JWH-015 plus 1.5 mg kg−1 SR2. Treatments were carried out by injections in the peritumoural area every day. Tumour volumes were measured daily. (A) The dorsal side of representative mice and dissected tumours after treatment. (B) Tumour growth curve after administration of vehicle (diamonds), JWH-015 (squares) or JWH-015+SR2 (triangles). Results represent the mean±s.e. of eight mice in each group. *P<0.01 vs control and #P<0.01 vs JWH-015, compared by Student's t-test.

Mentions: The above observations of the anti-proliferative effects of JWH-015 were examined in a xenograft model of prostate cancer. Xenograft human prostate tumours were established in nu/nu mice by a s.c. injection. Tumour-bearing animals (∼70 mm2) were treated daily with vehicle, 1.5 mg ml−1 JWH-015 or 1.5 mg ml−1 JWH-015 plus 1.5 mg kg−1 SR2. Animals were treated for 15 days and tumour volume was calculated every day. At the end of the experiment, tumours were dissected and weighed. As shown in Figure 8, JWH-015-treated animals had a rapid and dramatic reduction in tumour growth, whereas uncontrolled growth was observed in the control group. The final tumour volume as well as the final tumour weight was significantly lower in the JWH-015-treated group compared with that in the control group (Table 1). Treatment with JWH-015 plus SR2 resulted in a similar growth compared with that in the control group, suggesting that the in vivo effect of JWH-015 is also mediated through CB2 activation (Figure 8 and Table 1).


Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: involvement of CB2.

Olea-Herrero N, Vara D, Malagarie-Cazenave S, Díaz-Laviada I - Br. J. Cancer (2009)

In vivo anti-tumoural properties of JWH-015. Athymic nude mice were injected s.c. in the right flank with PC-3 cells and 4 weeks later (day 0) were treated for 15 days with vehicle (control), 1.5 mg kg−1 JWH-015 or 1.5 mg kg−1 JWH-015 plus 1.5 mg kg−1 SR2. Treatments were carried out by injections in the peritumoural area every day. Tumour volumes were measured daily. (A) The dorsal side of representative mice and dissected tumours after treatment. (B) Tumour growth curve after administration of vehicle (diamonds), JWH-015 (squares) or JWH-015+SR2 (triangles). Results represent the mean±s.e. of eight mice in each group. *P<0.01 vs control and #P<0.01 vs JWH-015, compared by Student's t-test.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2743360&req=5

fig8: In vivo anti-tumoural properties of JWH-015. Athymic nude mice were injected s.c. in the right flank with PC-3 cells and 4 weeks later (day 0) were treated for 15 days with vehicle (control), 1.5 mg kg−1 JWH-015 or 1.5 mg kg−1 JWH-015 plus 1.5 mg kg−1 SR2. Treatments were carried out by injections in the peritumoural area every day. Tumour volumes were measured daily. (A) The dorsal side of representative mice and dissected tumours after treatment. (B) Tumour growth curve after administration of vehicle (diamonds), JWH-015 (squares) or JWH-015+SR2 (triangles). Results represent the mean±s.e. of eight mice in each group. *P<0.01 vs control and #P<0.01 vs JWH-015, compared by Student's t-test.
Mentions: The above observations of the anti-proliferative effects of JWH-015 were examined in a xenograft model of prostate cancer. Xenograft human prostate tumours were established in nu/nu mice by a s.c. injection. Tumour-bearing animals (∼70 mm2) were treated daily with vehicle, 1.5 mg ml−1 JWH-015 or 1.5 mg ml−1 JWH-015 plus 1.5 mg kg−1 SR2. Animals were treated for 15 days and tumour volume was calculated every day. At the end of the experiment, tumours were dissected and weighed. As shown in Figure 8, JWH-015-treated animals had a rapid and dramatic reduction in tumour growth, whereas uncontrolled growth was observed in the control group. The final tumour volume as well as the final tumour weight was significantly lower in the JWH-015-treated group compared with that in the control group (Table 1). Treatment with JWH-015 plus SR2 resulted in a similar growth compared with that in the control group, suggesting that the in vivo effect of JWH-015 is also mediated through CB2 activation (Figure 8 and Table 1).

Bottom Line: We found that the anandamide analogue, R(+)-Methanandamide (MET), as well as JWH-015, a synthetic CB(2) agonist, exerted anti-proliferative effects in PC-3 cells.Further analysing the mechanism of JWH-015-induced cell growth inhibition, we found that JWH-015 triggered a de novo synthesis of ceramide, which was involved in cannabinoid-induced cell death, insofar as blocking ceramide synthesis with Fumonisin B1 reduced cell death.In vivo treatment with JWH-015 caused a significant reduction in tumour growth in mice.

View Article: PubMed Central - PubMed

Affiliation: Department of Biochemistry and Molecular Biology, School of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain.

ABSTRACT

Background: We have previously shown that cannabinoids induce growth inhibition and apoptosis in prostate cancer PC-3 cells, which express high levels of cannabinoid receptor types 1 and 2 (CB(1) and CB(2)). In this study, we investigated the role of CB(2) receptor in the anti-proliferative action of cannabinoids and the signal transduction triggered by receptor ligation.

Methods: The human prostate cancer cell lines, namely PC-3, DU-145 and LNCaP, were used for this study. Cell proliferation was measured using MTT proliferation assay, [(3)H]-thymidine incorporation assay and cell-cycle study by flow cytometry. Ceramide quantification was performed using the DAG kinase method. The CB(2) receptor was silenced with specific small interfering RNA, and was blocked pharmacologically with SR 144528. In vivo studies were conducted by the induction of prostate xenograft tumours in nude mice.

Results: We found that the anandamide analogue, R(+)-Methanandamide (MET), as well as JWH-015, a synthetic CB(2) agonist, exerted anti-proliferative effects in PC-3 cells. R(+)-Methanandamide- and JWH-015-induced cell death was rescued by treatment with the CB(2) receptor antagonist, SR 144528. Downregulation of CB(2) expression reversed the effects of JWH-015, confirming the involvement of CB(2) in the pro-apoptotic effect of cannabinoids. Further analysing the mechanism of JWH-015-induced cell growth inhibition, we found that JWH-015 triggered a de novo synthesis of ceramide, which was involved in cannabinoid-induced cell death, insofar as blocking ceramide synthesis with Fumonisin B1 reduced cell death. Signalling pathways activated by JWH-015 included JNK (c-Jun N-terminal kinase) activation and Akt inhibition. In vivo treatment with JWH-015 caused a significant reduction in tumour growth in mice.

Conclusions: This study defines the involvement of CB(2)-mediated signalling in the in vivo and in vitro growth inhibition of prostate cancer cells and suggests that CB(2) agonists have potential therapeutic interest and deserve to be explored in the management of prostate cancer.

Show MeSH
Related in: MedlinePlus