Limits...
Enterocyte shedding and epithelial lining repair following ischemia of the human small intestine attenuate inflammation.

Matthijsen RA, Derikx JP, Kuipers D, van Dam RM, Dejong CH, Buurman WA - PLoS ONE (2009)

Bottom Line: Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter.In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response.This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group.

View Article: PubMed Central - PubMed

Affiliation: Department of Surgery, School for Nutrition & Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands.

ABSTRACT

Background: Recently, we observed that small-intestinal ischemia and reperfusion was found to entail a rapid loss of apoptotic and necrotic cells. This study was conducted to investigate whether the observed shedding of ischemically damaged epithelial cells affects IR induced inflammation in the human small gut.

Methods and findings: Using a newly developed IR model of the human small intestine, the inflammatory response was studied on cellular, protein and mRNA level. Thirty patients were consecutively included. Part of the jejunum was subjected to 30 minutes of ischemia and variable reperfusion periods (mean reperfusion time 120 (+/-11) minutes). Ethical approval and informed consent were obtained. Increased plasma intestinal fatty acid binding protein (I-FABP) levels indicated loss in epithelial cell integrity in response to ischemia and reperfusion (p<0.001 vs healthy). HIF-1alpha gene expression doubled (p = 0.02) and C3 gene expression increased 4-fold (p = 0.01) over the course of IR. Gut barrier failure, assessed as LPS concentration in small bowel venous effluent blood, was not observed (p = 0.18). Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter. No increased expression of endothelial adhesion molecules, TNFalpha release, increased numbers of inflammatory cells (p = 0.71) or complement activation, assessed as activated C3 (p = 0.14), were detected in the reperfused tissue.

Conclusions: In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response. This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group.

Show MeSH

Related in: MedlinePlus

Complement activation.A) C3 was not be detected in the reperfused jejunum using immunohistochemistry. Original magnification 200x. B) Western blot analysis, under reducing conditions, revealed no increase in activated human C3 (±75 kD) in whole reperfused jejunum samples, when compared to healthy control tissue (p = 0.14). C) C3 mRNA expression increased over 4-fold during IR of the human jejunum (p = 0.01).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2737143&req=5

pone-0007045-g006: Complement activation.A) C3 was not be detected in the reperfused jejunum using immunohistochemistry. Original magnification 200x. B) Western blot analysis, under reducing conditions, revealed no increase in activated human C3 (±75 kD) in whole reperfused jejunum samples, when compared to healthy control tissue (p = 0.14). C) C3 mRNA expression increased over 4-fold during IR of the human jejunum (p = 0.01).

Mentions: As a central mediator of IR induced inflammation, complement is involved in the development of organ damage. Complement component C3 is an important constituent of the complement system, of which activation and deposition indicate complement activity. Immunohistochemical analysis of healthy and IR damaged jejunum sections revealed no increase in C3 deposition in response to IR (Fig. 6A). In order to validate these data, human C3 protein in total jejunum tissue after reperfusion was additionally analyzed by Western blot. In keeping with the above results, jejunum tissue specimens showed no increase in the presence of activated C3 over the course of IR, when compared to their healthy controls (Fig. 6B. I/R = 3.09±1.79 relative intensity vs Healthy = 1.00 relative intensity. p = 0.14, n = 12).


Enterocyte shedding and epithelial lining repair following ischemia of the human small intestine attenuate inflammation.

Matthijsen RA, Derikx JP, Kuipers D, van Dam RM, Dejong CH, Buurman WA - PLoS ONE (2009)

Complement activation.A) C3 was not be detected in the reperfused jejunum using immunohistochemistry. Original magnification 200x. B) Western blot analysis, under reducing conditions, revealed no increase in activated human C3 (±75 kD) in whole reperfused jejunum samples, when compared to healthy control tissue (p = 0.14). C) C3 mRNA expression increased over 4-fold during IR of the human jejunum (p = 0.01).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2737143&req=5

pone-0007045-g006: Complement activation.A) C3 was not be detected in the reperfused jejunum using immunohistochemistry. Original magnification 200x. B) Western blot analysis, under reducing conditions, revealed no increase in activated human C3 (±75 kD) in whole reperfused jejunum samples, when compared to healthy control tissue (p = 0.14). C) C3 mRNA expression increased over 4-fold during IR of the human jejunum (p = 0.01).
Mentions: As a central mediator of IR induced inflammation, complement is involved in the development of organ damage. Complement component C3 is an important constituent of the complement system, of which activation and deposition indicate complement activity. Immunohistochemical analysis of healthy and IR damaged jejunum sections revealed no increase in C3 deposition in response to IR (Fig. 6A). In order to validate these data, human C3 protein in total jejunum tissue after reperfusion was additionally analyzed by Western blot. In keeping with the above results, jejunum tissue specimens showed no increase in the presence of activated C3 over the course of IR, when compared to their healthy controls (Fig. 6B. I/R = 3.09±1.79 relative intensity vs Healthy = 1.00 relative intensity. p = 0.14, n = 12).

Bottom Line: Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter.In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response.This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group.

View Article: PubMed Central - PubMed

Affiliation: Department of Surgery, School for Nutrition & Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands.

ABSTRACT

Background: Recently, we observed that small-intestinal ischemia and reperfusion was found to entail a rapid loss of apoptotic and necrotic cells. This study was conducted to investigate whether the observed shedding of ischemically damaged epithelial cells affects IR induced inflammation in the human small gut.

Methods and findings: Using a newly developed IR model of the human small intestine, the inflammatory response was studied on cellular, protein and mRNA level. Thirty patients were consecutively included. Part of the jejunum was subjected to 30 minutes of ischemia and variable reperfusion periods (mean reperfusion time 120 (+/-11) minutes). Ethical approval and informed consent were obtained. Increased plasma intestinal fatty acid binding protein (I-FABP) levels indicated loss in epithelial cell integrity in response to ischemia and reperfusion (p<0.001 vs healthy). HIF-1alpha gene expression doubled (p = 0.02) and C3 gene expression increased 4-fold (p = 0.01) over the course of IR. Gut barrier failure, assessed as LPS concentration in small bowel venous effluent blood, was not observed (p = 0.18). Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter. No increased expression of endothelial adhesion molecules, TNFalpha release, increased numbers of inflammatory cells (p = 0.71) or complement activation, assessed as activated C3 (p = 0.14), were detected in the reperfused tissue.

Conclusions: In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response. This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group.

Show MeSH
Related in: MedlinePlus