Limits...
Enterocyte shedding and epithelial lining repair following ischemia of the human small intestine attenuate inflammation.

Matthijsen RA, Derikx JP, Kuipers D, van Dam RM, Dejong CH, Buurman WA - PLoS ONE (2009)

Bottom Line: Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter.In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response.This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group.

View Article: PubMed Central - PubMed

Affiliation: Department of Surgery, School for Nutrition & Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands.

ABSTRACT

Background: Recently, we observed that small-intestinal ischemia and reperfusion was found to entail a rapid loss of apoptotic and necrotic cells. This study was conducted to investigate whether the observed shedding of ischemically damaged epithelial cells affects IR induced inflammation in the human small gut.

Methods and findings: Using a newly developed IR model of the human small intestine, the inflammatory response was studied on cellular, protein and mRNA level. Thirty patients were consecutively included. Part of the jejunum was subjected to 30 minutes of ischemia and variable reperfusion periods (mean reperfusion time 120 (+/-11) minutes). Ethical approval and informed consent were obtained. Increased plasma intestinal fatty acid binding protein (I-FABP) levels indicated loss in epithelial cell integrity in response to ischemia and reperfusion (p<0.001 vs healthy). HIF-1alpha gene expression doubled (p = 0.02) and C3 gene expression increased 4-fold (p = 0.01) over the course of IR. Gut barrier failure, assessed as LPS concentration in small bowel venous effluent blood, was not observed (p = 0.18). Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter. No increased expression of endothelial adhesion molecules, TNFalpha release, increased numbers of inflammatory cells (p = 0.71) or complement activation, assessed as activated C3 (p = 0.14), were detected in the reperfused tissue.

Conclusions: In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response. This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group.

Show MeSH

Related in: MedlinePlus

Neutrophil recruitment.A) No increase of PMN was observed over the course of reperfusion in response to 30 minutes of ischemia. Detected by specific HNP1-3 staining (AEC, indicated by arrows) the number of PMN in reperfused jejunum did not increase in comparison to healthy tissue (p = 0.90). Original magnification 200x. Clearly the PMN concentrated around the cellular debris collecting in the safe intestinal lumen (right insert in Fig. 4A indicated by arrow. Original magnification 200x). B) Tissue MPO, assessed by ELISA, did not increase substantially over the course of IR (p = 0.71).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2737143&req=5

pone-0007045-g005: Neutrophil recruitment.A) No increase of PMN was observed over the course of reperfusion in response to 30 minutes of ischemia. Detected by specific HNP1-3 staining (AEC, indicated by arrows) the number of PMN in reperfused jejunum did not increase in comparison to healthy tissue (p = 0.90). Original magnification 200x. Clearly the PMN concentrated around the cellular debris collecting in the safe intestinal lumen (right insert in Fig. 4A indicated by arrow. Original magnification 200x). B) Tissue MPO, assessed by ELISA, did not increase substantially over the course of IR (p = 0.71).

Mentions: Critical in the induction of reperfusion injury is the influx of neutrophils as well as the release of their reactive constituents. The presence of neutrophils was assessed using two different and widely used neutrophil markers, human neutrophil defensin 1–3 (HNP1-3) and myeloperoxidase (MPO), both stored in abundance in azurophilic granules of neutrophils. Analysis of immunostained tissue sections showed that the number of PMN in the reperfused jejunum was similar to the number of PMN observed in healthy control jejunum samples, as detected by immunohistochemical analysis of HNP1-3 (Fig. 5A. p = 0.90, n = 10). In concordance, analysis of whole jejunum samples for total MPO content by ELISA revealed no increase in MPO protein in the reperfused jejunum, when compared to healthy jejunum control samples (Fig. 5B. I/R = 101.0±31.3 ng/mg vs Healthy = 75.9±32.6 ng/mg. p = 0.71, n = 12). A small number of HNP1-3 positive PMN were observed in cellular debris in the intestinal lumen (Fig. 5A. Picture insert, broad arrow). The presence of these PMN in the intestinal lumen was apparently of no considerable consequence to the remaining jejunum.


Enterocyte shedding and epithelial lining repair following ischemia of the human small intestine attenuate inflammation.

Matthijsen RA, Derikx JP, Kuipers D, van Dam RM, Dejong CH, Buurman WA - PLoS ONE (2009)

Neutrophil recruitment.A) No increase of PMN was observed over the course of reperfusion in response to 30 minutes of ischemia. Detected by specific HNP1-3 staining (AEC, indicated by arrows) the number of PMN in reperfused jejunum did not increase in comparison to healthy tissue (p = 0.90). Original magnification 200x. Clearly the PMN concentrated around the cellular debris collecting in the safe intestinal lumen (right insert in Fig. 4A indicated by arrow. Original magnification 200x). B) Tissue MPO, assessed by ELISA, did not increase substantially over the course of IR (p = 0.71).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2737143&req=5

pone-0007045-g005: Neutrophil recruitment.A) No increase of PMN was observed over the course of reperfusion in response to 30 minutes of ischemia. Detected by specific HNP1-3 staining (AEC, indicated by arrows) the number of PMN in reperfused jejunum did not increase in comparison to healthy tissue (p = 0.90). Original magnification 200x. Clearly the PMN concentrated around the cellular debris collecting in the safe intestinal lumen (right insert in Fig. 4A indicated by arrow. Original magnification 200x). B) Tissue MPO, assessed by ELISA, did not increase substantially over the course of IR (p = 0.71).
Mentions: Critical in the induction of reperfusion injury is the influx of neutrophils as well as the release of their reactive constituents. The presence of neutrophils was assessed using two different and widely used neutrophil markers, human neutrophil defensin 1–3 (HNP1-3) and myeloperoxidase (MPO), both stored in abundance in azurophilic granules of neutrophils. Analysis of immunostained tissue sections showed that the number of PMN in the reperfused jejunum was similar to the number of PMN observed in healthy control jejunum samples, as detected by immunohistochemical analysis of HNP1-3 (Fig. 5A. p = 0.90, n = 10). In concordance, analysis of whole jejunum samples for total MPO content by ELISA revealed no increase in MPO protein in the reperfused jejunum, when compared to healthy jejunum control samples (Fig. 5B. I/R = 101.0±31.3 ng/mg vs Healthy = 75.9±32.6 ng/mg. p = 0.71, n = 12). A small number of HNP1-3 positive PMN were observed in cellular debris in the intestinal lumen (Fig. 5A. Picture insert, broad arrow). The presence of these PMN in the intestinal lumen was apparently of no considerable consequence to the remaining jejunum.

Bottom Line: Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter.In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response.This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group.

View Article: PubMed Central - PubMed

Affiliation: Department of Surgery, School for Nutrition & Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands.

ABSTRACT

Background: Recently, we observed that small-intestinal ischemia and reperfusion was found to entail a rapid loss of apoptotic and necrotic cells. This study was conducted to investigate whether the observed shedding of ischemically damaged epithelial cells affects IR induced inflammation in the human small gut.

Methods and findings: Using a newly developed IR model of the human small intestine, the inflammatory response was studied on cellular, protein and mRNA level. Thirty patients were consecutively included. Part of the jejunum was subjected to 30 minutes of ischemia and variable reperfusion periods (mean reperfusion time 120 (+/-11) minutes). Ethical approval and informed consent were obtained. Increased plasma intestinal fatty acid binding protein (I-FABP) levels indicated loss in epithelial cell integrity in response to ischemia and reperfusion (p<0.001 vs healthy). HIF-1alpha gene expression doubled (p = 0.02) and C3 gene expression increased 4-fold (p = 0.01) over the course of IR. Gut barrier failure, assessed as LPS concentration in small bowel venous effluent blood, was not observed (p = 0.18). Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter. No increased expression of endothelial adhesion molecules, TNFalpha release, increased numbers of inflammatory cells (p = 0.71) or complement activation, assessed as activated C3 (p = 0.14), were detected in the reperfused tissue.

Conclusions: In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response. This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group.

Show MeSH
Related in: MedlinePlus