Limits...
A new basal sauropod dinosaur from the middle Jurassic of Niger and the early evolution of sauropoda.

Remes K, Ortega F, Fierro I, Joger U, Kosma R, Ferrer JM, Project PALDESNiger Project SNHMIde OA, Maga A - PLoS ONE (2009)

Bottom Line: Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line.The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time.Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification.

View Article: PubMed Central - PubMed

Affiliation: Paleontology, Steinmann Institute for Geology, Mineralogy and Paleontology, University of Bonn, Bonn, Germany. kristian.remes@uni-bonn.de

ABSTRACT

Background: The early evolution of sauropod dinosaurs is poorly understood because of a highly incomplete fossil record. New discoveries of Early and Middle Jurassic sauropods have a great potential to lead to a better understanding of early sauropod evolution and to reevaluate the patterns of sauropod diversification.

Principal findings: A new sauropod from the Middle Jurassic of Niger, Spinophorosaurus nigerensis n. gen. et sp., is the most complete basal sauropod currently known. The taxon shares many anatomical characters with Middle Jurassic East Asian sauropods, while it is strongly dissimilar to Lower and Middle Jurassic South American and Indian forms. A possible explanation for this pattern is a separation of Laurasian and South Gondwanan Middle Jurassic sauropod faunas by geographic barriers. Integration of phylogenetic analyses and paleogeographic data reveals congruence between early sauropod evolution and hypotheses about Jurassic paleoclimate and phytogeography.

Conclusions: Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line. The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time. Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification.

Show MeSH

Related in: MedlinePlus

Spinophorosaurus nigerensis, holotype skeleton GCP-CV-4229 in situ during excavation in the region of Aderbissinat, Thirozerine Dept., Agadez Region, Republic of Niger.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2737122&req=5

pone-0006924-g001: Spinophorosaurus nigerensis, holotype skeleton GCP-CV-4229 in situ during excavation in the region of Aderbissinat, Thirozerine Dept., Agadez Region, Republic of Niger.

Mentions: Specimen numbers GCP-CV-4229 (provisionally housed at the Museo Paleontológico de Elche, Spain; collection abbreviation GCP stands for Grupo Cultural Paleontológico de Elche) and NMB-1699-R (provisionally housed at the Staatliches Naturhistorisches Museum Braunschweig, Germany, collection abbreviation NMB), a braincase, postorbital, squamosal, quadrate, pterygoid, surangular, and a nearly complete postcranial skeleton of a single individual, lacking the sternum, antebrachium, manus, and pes (Fig. 1). In future, the specimens will be managed by the Musée National d'Histoire Naturelle, Niamey, Niger.


A new basal sauropod dinosaur from the middle Jurassic of Niger and the early evolution of sauropoda.

Remes K, Ortega F, Fierro I, Joger U, Kosma R, Ferrer JM, Project PALDESNiger Project SNHMIde OA, Maga A - PLoS ONE (2009)

Spinophorosaurus nigerensis, holotype skeleton GCP-CV-4229 in situ during excavation in the region of Aderbissinat, Thirozerine Dept., Agadez Region, Republic of Niger.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2737122&req=5

pone-0006924-g001: Spinophorosaurus nigerensis, holotype skeleton GCP-CV-4229 in situ during excavation in the region of Aderbissinat, Thirozerine Dept., Agadez Region, Republic of Niger.
Mentions: Specimen numbers GCP-CV-4229 (provisionally housed at the Museo Paleontológico de Elche, Spain; collection abbreviation GCP stands for Grupo Cultural Paleontológico de Elche) and NMB-1699-R (provisionally housed at the Staatliches Naturhistorisches Museum Braunschweig, Germany, collection abbreviation NMB), a braincase, postorbital, squamosal, quadrate, pterygoid, surangular, and a nearly complete postcranial skeleton of a single individual, lacking the sternum, antebrachium, manus, and pes (Fig. 1). In future, the specimens will be managed by the Musée National d'Histoire Naturelle, Niamey, Niger.

Bottom Line: Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line.The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time.Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification.

View Article: PubMed Central - PubMed

Affiliation: Paleontology, Steinmann Institute for Geology, Mineralogy and Paleontology, University of Bonn, Bonn, Germany. kristian.remes@uni-bonn.de

ABSTRACT

Background: The early evolution of sauropod dinosaurs is poorly understood because of a highly incomplete fossil record. New discoveries of Early and Middle Jurassic sauropods have a great potential to lead to a better understanding of early sauropod evolution and to reevaluate the patterns of sauropod diversification.

Principal findings: A new sauropod from the Middle Jurassic of Niger, Spinophorosaurus nigerensis n. gen. et sp., is the most complete basal sauropod currently known. The taxon shares many anatomical characters with Middle Jurassic East Asian sauropods, while it is strongly dissimilar to Lower and Middle Jurassic South American and Indian forms. A possible explanation for this pattern is a separation of Laurasian and South Gondwanan Middle Jurassic sauropod faunas by geographic barriers. Integration of phylogenetic analyses and paleogeographic data reveals congruence between early sauropod evolution and hypotheses about Jurassic paleoclimate and phytogeography.

Conclusions: Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line. The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time. Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification.

Show MeSH
Related in: MedlinePlus