Limits...
KSP inhibitor ARRY-520 as a substitute for Paclitaxel in Type I ovarian cancer cells.

Kim KH, Xie Y, Tytler EM, Woessner R, Mor G, Alvero AB - J Transl Med (2009)

Bottom Line: ARRY-520 and Paclitaxel exhibited the same cytotoxic effect on Type I and II cells.Unlike Paclitaxel, ARRY-520 did not induce NF-kappaB activation, did not enhance cytokine secretion, nor induce ERK phosphorylation in Type I EOC cells.However, unlike Paclitaxel, it does not induce these pro-tumor effects in Type I cells.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA. ghkim@pusan.ac.kr

ABSTRACT

Background: We previously described a sub-population of epithelial ovarian cancer (EOC) cells with a functional TLR-4/MyD88/NF-kappaB pathway (Type I EOC cells), which confers the capacity to respond to Paclitaxel, a known TLR-4 ligand, by enhancing NF-kappaB activity and upregulating cytokine secretion - events that are known to promote tumor progression. It is therefore important to distinguish those patients that should not receive Paclitaxel; it is also important to identify alternative chemotherapy options that would benefit this sub-group of patients. The objective of this study is to determine if the KSP inhibitor, ARRY-520, can be a substitute for Paclitaxel in patients with Type I EOC.

Methods: EOC cells isolated from either ascites or tumor tissue were treated with increasing concentrations of ARRY-520 or Paclitaxel and cell viability determined. Activation of the apoptotic pathway was determined using Western blot analysis. Mitochondrial integrity was quantified using JC1 dye. Cytokine profiling was performed from supernatants using xMAP technology. NF-kappaB activity was measured using a Luciferase reporter system. In vivo activity was determined using a subcutaneous xenograft mouse model.

Results: ARRY-520 and Paclitaxel exhibited the same cytotoxic effect on Type I and II cells. The GI50 at 48 h for Type II EOC cells was 0.0015 microM and 0.2 microM for ARRY-520 and Paclitaxel, respectively. For Type I EOC cells, the GI50 at 48 h was > 3 microM and >20 microM for ARRY-520 and Paclitaxel, respectively. Decrease in the number of viable cells was accompanied by mitochondrial depolarization and caspase activation. Unlike Paclitaxel, ARRY-520 did not induce NF-kappaB activation, did not enhance cytokine secretion, nor induce ERK phosphorylation in Type I EOC cells.

Conclusion: Administration of Paclitaxel to patients with high percentage Type I cancer cells could have detrimental effects due to Paclitaxel-induced enhancement of NF-kappaB and ERK activities, and cytokine production (e.g. IL-6), which promote chemoresistance and tumor progression. ARRY-520 has similar anti-tumor activity in EOC cells as that of Paclitaxel. However, unlike Paclitaxel, it does not induce these pro-tumor effects in Type I cells. Therefore, the KSP inhibitor ARRY-520 may represent an alternative to Paclitaxel in this subgroup of EOC patients.

Show MeSH

Related in: MedlinePlus

Differential effect of ARRY-520 and Paclitaxel on cytokine profile in Type I EOC cells. Cells were treated with ARRY-520 (0.03, 0.3, 3 μM) or Paclitaxel for (0.2, 2, 20 μM) for 48 hrs and levels of secreted cytokines/chemokines were determined using xMAP technology.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2719595&req=5

Figure 5: Differential effect of ARRY-520 and Paclitaxel on cytokine profile in Type I EOC cells. Cells were treated with ARRY-520 (0.03, 0.3, 3 μM) or Paclitaxel for (0.2, 2, 20 μM) for 48 hrs and levels of secreted cytokines/chemokines were determined using xMAP technology.

Mentions: Recently, we reported that Paclitaxel, which is a known TLR-4 ligand, is able to activate NF-κB and induce the secretion of pro-inflammatory cytokines and chemokines in Type I EOC cells [4,5]. Thus, our next objective was to determine the effect of ARRY-520 on NF-κB and cytokine profile in this sub-group of EOC cells. As shown in Fig. 4, unlike Paclitaxel, ARRY-520 at the highest dose used (3 μM) does not induce NF-κB activation. In addition, ARRY-520 does not increase the secretion of pro-tumor cytokines IL-6, IL-8, and GRO-α (Fig. 5), which was previously seen with Paclitaxel treatment. Instead, ARRY-520 is able to down-regulate the constitutive MCP-1 secretion in these cells.


KSP inhibitor ARRY-520 as a substitute for Paclitaxel in Type I ovarian cancer cells.

Kim KH, Xie Y, Tytler EM, Woessner R, Mor G, Alvero AB - J Transl Med (2009)

Differential effect of ARRY-520 and Paclitaxel on cytokine profile in Type I EOC cells. Cells were treated with ARRY-520 (0.03, 0.3, 3 μM) or Paclitaxel for (0.2, 2, 20 μM) for 48 hrs and levels of secreted cytokines/chemokines were determined using xMAP technology.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2719595&req=5

Figure 5: Differential effect of ARRY-520 and Paclitaxel on cytokine profile in Type I EOC cells. Cells were treated with ARRY-520 (0.03, 0.3, 3 μM) or Paclitaxel for (0.2, 2, 20 μM) for 48 hrs and levels of secreted cytokines/chemokines were determined using xMAP technology.
Mentions: Recently, we reported that Paclitaxel, which is a known TLR-4 ligand, is able to activate NF-κB and induce the secretion of pro-inflammatory cytokines and chemokines in Type I EOC cells [4,5]. Thus, our next objective was to determine the effect of ARRY-520 on NF-κB and cytokine profile in this sub-group of EOC cells. As shown in Fig. 4, unlike Paclitaxel, ARRY-520 at the highest dose used (3 μM) does not induce NF-κB activation. In addition, ARRY-520 does not increase the secretion of pro-tumor cytokines IL-6, IL-8, and GRO-α (Fig. 5), which was previously seen with Paclitaxel treatment. Instead, ARRY-520 is able to down-regulate the constitutive MCP-1 secretion in these cells.

Bottom Line: ARRY-520 and Paclitaxel exhibited the same cytotoxic effect on Type I and II cells.Unlike Paclitaxel, ARRY-520 did not induce NF-kappaB activation, did not enhance cytokine secretion, nor induce ERK phosphorylation in Type I EOC cells.However, unlike Paclitaxel, it does not induce these pro-tumor effects in Type I cells.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA. ghkim@pusan.ac.kr

ABSTRACT

Background: We previously described a sub-population of epithelial ovarian cancer (EOC) cells with a functional TLR-4/MyD88/NF-kappaB pathway (Type I EOC cells), which confers the capacity to respond to Paclitaxel, a known TLR-4 ligand, by enhancing NF-kappaB activity and upregulating cytokine secretion - events that are known to promote tumor progression. It is therefore important to distinguish those patients that should not receive Paclitaxel; it is also important to identify alternative chemotherapy options that would benefit this sub-group of patients. The objective of this study is to determine if the KSP inhibitor, ARRY-520, can be a substitute for Paclitaxel in patients with Type I EOC.

Methods: EOC cells isolated from either ascites or tumor tissue were treated with increasing concentrations of ARRY-520 or Paclitaxel and cell viability determined. Activation of the apoptotic pathway was determined using Western blot analysis. Mitochondrial integrity was quantified using JC1 dye. Cytokine profiling was performed from supernatants using xMAP technology. NF-kappaB activity was measured using a Luciferase reporter system. In vivo activity was determined using a subcutaneous xenograft mouse model.

Results: ARRY-520 and Paclitaxel exhibited the same cytotoxic effect on Type I and II cells. The GI50 at 48 h for Type II EOC cells was 0.0015 microM and 0.2 microM for ARRY-520 and Paclitaxel, respectively. For Type I EOC cells, the GI50 at 48 h was > 3 microM and >20 microM for ARRY-520 and Paclitaxel, respectively. Decrease in the number of viable cells was accompanied by mitochondrial depolarization and caspase activation. Unlike Paclitaxel, ARRY-520 did not induce NF-kappaB activation, did not enhance cytokine secretion, nor induce ERK phosphorylation in Type I EOC cells.

Conclusion: Administration of Paclitaxel to patients with high percentage Type I cancer cells could have detrimental effects due to Paclitaxel-induced enhancement of NF-kappaB and ERK activities, and cytokine production (e.g. IL-6), which promote chemoresistance and tumor progression. ARRY-520 has similar anti-tumor activity in EOC cells as that of Paclitaxel. However, unlike Paclitaxel, it does not induce these pro-tumor effects in Type I cells. Therefore, the KSP inhibitor ARRY-520 may represent an alternative to Paclitaxel in this subgroup of EOC patients.

Show MeSH
Related in: MedlinePlus