Limits...
Isolation of genetically diverse Marburg viruses from Egyptian fruit bats.

Towner JS, Amman BR, Sealy TK, Carroll SA, Comer JA, Kemp A, Swanepoel R, Paddock CD, Balinandi S, Khristova ML, Formenty PB, Albarino CG, Miller DM, Reed ZD, Kayiwa JT, Mills JN, Cannon DL, Greer PW, Byaruhanga E, Farnon EC, Atimnedi P, Okware S, Katongole-Mbidde E, Downing R, Tappero JW, Zaki SR, Ksiazek TG, Nichol ST, Rollin PE - PLoS Pathog. (2009)

Bottom Line: The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats.The genetically diverse virus genome sequences from bats and miners closely matched.These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.

View Article: PubMed Central - PubMed

Affiliation: Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA.

ABSTRACT
In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.

Show MeSH

Related in: MedlinePlus

Phylogenetic analysis of full-length or partial genomes of Marburg viruses isolated from humans or bats (see Table S1 for Genbank accession numbers).Trees shown are maximum-likelihood analyses with Bayesian posterior probabilities >50 listed at the appropriate nodes. The ebolavirus outgroup used during the Bayesian phylogenetic analyses are denoted by the small twig at the root of the tree. Marburg virus sequences from 2007 human cases in Uganda are in green, while those from bats are listed in red. (A) Analysis of full-length genomes of five Marburg virus bat isolates, 18 historical isolates, and the isolates from patients A and B (01Uga07 and 02Uga07 respectively). (B) Phylogenetic analysis of concatenated NP and VP35 sequence fragments obtained from each bat specimen compared to corresponding regions from 48 historical isolates and those from 01Uga07 and 02Uga07.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2713404&req=5

ppat-1000536-g002: Phylogenetic analysis of full-length or partial genomes of Marburg viruses isolated from humans or bats (see Table S1 for Genbank accession numbers).Trees shown are maximum-likelihood analyses with Bayesian posterior probabilities >50 listed at the appropriate nodes. The ebolavirus outgroup used during the Bayesian phylogenetic analyses are denoted by the small twig at the root of the tree. Marburg virus sequences from 2007 human cases in Uganda are in green, while those from bats are listed in red. (A) Analysis of full-length genomes of five Marburg virus bat isolates, 18 historical isolates, and the isolates from patients A and B (01Uga07 and 02Uga07 respectively). (B) Phylogenetic analysis of concatenated NP and VP35 sequence fragments obtained from each bat specimen compared to corresponding regions from 48 historical isolates and those from 01Uga07 and 02Uga07.

Mentions: The results of Bayesian analysis of the nucleotide differences among full-length virus genome sequences of the isolates from the two miners (01Uga2007 and 02Uga2007), plus the five isolates from bats (44, 188, 331, 371 and 982, Table 3), and 18 representative historical Marburg virus isolates, is shown in Figure 2A. Isolate 01Uga2007 falls into the prototypic clade containing the majority of known Marburg virus sequences. The second human isolate, 02Uga2007, which differs by 21% (nucleotide level) from 01Uga2007, is closely related to members of the highly distinct Ravn lineage, first isolated in 1987 from a patient (RavKen1987) who ostensibly acquired infection in Kitum Cave, Kenya [5]. Thus, it is clear that the Kitaka mine outbreak represented two independent introductions of infection from the natural reservoir hosts into the human population. Two of the bat isolates group with the majority of historical Marburg virus sequences and are most closely related (99.3% identical) to the sequence from miner A (01Uga2007), while the other 3 bat isolates reside within the Ravn lineage (RavKen1987) and are closely related (99.2–99.9% identical) to the sequence from miner B (02Uga2007).


Isolation of genetically diverse Marburg viruses from Egyptian fruit bats.

Towner JS, Amman BR, Sealy TK, Carroll SA, Comer JA, Kemp A, Swanepoel R, Paddock CD, Balinandi S, Khristova ML, Formenty PB, Albarino CG, Miller DM, Reed ZD, Kayiwa JT, Mills JN, Cannon DL, Greer PW, Byaruhanga E, Farnon EC, Atimnedi P, Okware S, Katongole-Mbidde E, Downing R, Tappero JW, Zaki SR, Ksiazek TG, Nichol ST, Rollin PE - PLoS Pathog. (2009)

Phylogenetic analysis of full-length or partial genomes of Marburg viruses isolated from humans or bats (see Table S1 for Genbank accession numbers).Trees shown are maximum-likelihood analyses with Bayesian posterior probabilities >50 listed at the appropriate nodes. The ebolavirus outgroup used during the Bayesian phylogenetic analyses are denoted by the small twig at the root of the tree. Marburg virus sequences from 2007 human cases in Uganda are in green, while those from bats are listed in red. (A) Analysis of full-length genomes of five Marburg virus bat isolates, 18 historical isolates, and the isolates from patients A and B (01Uga07 and 02Uga07 respectively). (B) Phylogenetic analysis of concatenated NP and VP35 sequence fragments obtained from each bat specimen compared to corresponding regions from 48 historical isolates and those from 01Uga07 and 02Uga07.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2713404&req=5

ppat-1000536-g002: Phylogenetic analysis of full-length or partial genomes of Marburg viruses isolated from humans or bats (see Table S1 for Genbank accession numbers).Trees shown are maximum-likelihood analyses with Bayesian posterior probabilities >50 listed at the appropriate nodes. The ebolavirus outgroup used during the Bayesian phylogenetic analyses are denoted by the small twig at the root of the tree. Marburg virus sequences from 2007 human cases in Uganda are in green, while those from bats are listed in red. (A) Analysis of full-length genomes of five Marburg virus bat isolates, 18 historical isolates, and the isolates from patients A and B (01Uga07 and 02Uga07 respectively). (B) Phylogenetic analysis of concatenated NP and VP35 sequence fragments obtained from each bat specimen compared to corresponding regions from 48 historical isolates and those from 01Uga07 and 02Uga07.
Mentions: The results of Bayesian analysis of the nucleotide differences among full-length virus genome sequences of the isolates from the two miners (01Uga2007 and 02Uga2007), plus the five isolates from bats (44, 188, 331, 371 and 982, Table 3), and 18 representative historical Marburg virus isolates, is shown in Figure 2A. Isolate 01Uga2007 falls into the prototypic clade containing the majority of known Marburg virus sequences. The second human isolate, 02Uga2007, which differs by 21% (nucleotide level) from 01Uga2007, is closely related to members of the highly distinct Ravn lineage, first isolated in 1987 from a patient (RavKen1987) who ostensibly acquired infection in Kitum Cave, Kenya [5]. Thus, it is clear that the Kitaka mine outbreak represented two independent introductions of infection from the natural reservoir hosts into the human population. Two of the bat isolates group with the majority of historical Marburg virus sequences and are most closely related (99.3% identical) to the sequence from miner A (01Uga2007), while the other 3 bat isolates reside within the Ravn lineage (RavKen1987) and are closely related (99.2–99.9% identical) to the sequence from miner B (02Uga2007).

Bottom Line: The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats.The genetically diverse virus genome sequences from bats and miners closely matched.These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.

View Article: PubMed Central - PubMed

Affiliation: Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA.

ABSTRACT
In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.

Show MeSH
Related in: MedlinePlus