Limits...
Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal.

Ma Y, Zhao R, He Y, Li S, Liu J, Wu Y, Cao Z, Li W - BMC Genomics (2009)

Bottom Line: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion.This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins.Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China. mayibao@163.com

ABSTRACT

Background: The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki.

Results: There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date.

Conclusion: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

Show MeSH
Sequence alignment of cytolytic peptides. SJEs are clusters from this work. Q8MMJ7 is cytotoxic linear peptide IsCT from the scorpion Opisthacanthus madagascariensis, and Q6JQN2 is BmKn2 from Mesobuthus martensii.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2713264&req=5

Figure 5: Sequence alignment of cytolytic peptides. SJEs are clusters from this work. Q8MMJ7 is cytotoxic linear peptide IsCT from the scorpion Opisthacanthus madagascariensis, and Q6JQN2 is BmKn2 from Mesobuthus martensii.

Mentions: In the transcriptome of the Scorpiops jendeki venom gland, cytolytic peptide precursors are the most highly expressed venom peptide transcripts. There are nine clusters (eight contigs and one singleton, 88 ESTs), representing approximately 10% of venom gland mRNAs. In contrast, in our previous investigation of Mesobuthus martensii venom, cytolytic peptides were observed at a rather low expression level (data not shown). Based on sequence similarity, the cytolytic peptides obtained in this study are divided into two clades: SJE020C, SJE063C and SJE122S form one clade; while the other clade consists of SJE007C, SJE026C, SJE046C, SJE048C, SJE072C and SJE086C(Figure 5). Translated sequences from each clade are almost identical in the signal peptide region, but rather variable in mature peptide and propeptide regions.


Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal.

Ma Y, Zhao R, He Y, Li S, Liu J, Wu Y, Cao Z, Li W - BMC Genomics (2009)

Sequence alignment of cytolytic peptides. SJEs are clusters from this work. Q8MMJ7 is cytotoxic linear peptide IsCT from the scorpion Opisthacanthus madagascariensis, and Q6JQN2 is BmKn2 from Mesobuthus martensii.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2713264&req=5

Figure 5: Sequence alignment of cytolytic peptides. SJEs are clusters from this work. Q8MMJ7 is cytotoxic linear peptide IsCT from the scorpion Opisthacanthus madagascariensis, and Q6JQN2 is BmKn2 from Mesobuthus martensii.
Mentions: In the transcriptome of the Scorpiops jendeki venom gland, cytolytic peptide precursors are the most highly expressed venom peptide transcripts. There are nine clusters (eight contigs and one singleton, 88 ESTs), representing approximately 10% of venom gland mRNAs. In contrast, in our previous investigation of Mesobuthus martensii venom, cytolytic peptides were observed at a rather low expression level (data not shown). Based on sequence similarity, the cytolytic peptides obtained in this study are divided into two clades: SJE020C, SJE063C and SJE122S form one clade; while the other clade consists of SJE007C, SJE026C, SJE046C, SJE048C, SJE072C and SJE086C(Figure 5). Translated sequences from each clade are almost identical in the signal peptide region, but rather variable in mature peptide and propeptide regions.

Bottom Line: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion.This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins.Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China. mayibao@163.com

ABSTRACT

Background: The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki.

Results: There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date.

Conclusion: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

Show MeSH