Limits...
Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal.

Ma Y, Zhao R, He Y, Li S, Liu J, Wu Y, Cao Z, Li W - BMC Genomics (2009)

Bottom Line: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion.This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins.Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China. mayibao@163.com

ABSTRACT

Background: The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki.

Results: There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date.

Conclusion: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

Show MeSH
Functional characterization of ESTs and assembled clusters from the Scorpiops jendeki venom gland. The vertical axis shows the number of ESTs or clusters.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2713264&req=5

Figure 13: Functional characterization of ESTs and assembled clusters from the Scorpiops jendeki venom gland. The vertical axis shows the number of ESTs or clusters.

Mentions: Among the matched non-toxin transcripts, 153 clusters (260 ESTs) have their physiological function found (Figure 13). Most of these clusters consist of only one or a few ESTs. Although the limited sequencing data of this study is far from the complete description of Scorpiops jendeki venom gland, it could be used to roughly estimate the ralative redundance of each category. Genes, which are involved in RNA transcription and especially protein metabolism, are highly expressed in the Scorpiops jendeki venom gland. The molecules related to protein metabolism are mainly diverse kinds of ribosomal proteins responsible for protein synthesis. Besides, protein synthesis and other metabolic process are highly energy-consuming, and protein processing and transporting is also intense for the newly-synthesized venom peptides. Accordingly, high expression levels are also observed in the gene sets within the transport category which are mainly responsible for the energy generation and protein sorting.


Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal.

Ma Y, Zhao R, He Y, Li S, Liu J, Wu Y, Cao Z, Li W - BMC Genomics (2009)

Functional characterization of ESTs and assembled clusters from the Scorpiops jendeki venom gland. The vertical axis shows the number of ESTs or clusters.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2713264&req=5

Figure 13: Functional characterization of ESTs and assembled clusters from the Scorpiops jendeki venom gland. The vertical axis shows the number of ESTs or clusters.
Mentions: Among the matched non-toxin transcripts, 153 clusters (260 ESTs) have their physiological function found (Figure 13). Most of these clusters consist of only one or a few ESTs. Although the limited sequencing data of this study is far from the complete description of Scorpiops jendeki venom gland, it could be used to roughly estimate the ralative redundance of each category. Genes, which are involved in RNA transcription and especially protein metabolism, are highly expressed in the Scorpiops jendeki venom gland. The molecules related to protein metabolism are mainly diverse kinds of ribosomal proteins responsible for protein synthesis. Besides, protein synthesis and other metabolic process are highly energy-consuming, and protein processing and transporting is also intense for the newly-synthesized venom peptides. Accordingly, high expression levels are also observed in the gene sets within the transport category which are mainly responsible for the energy generation and protein sorting.

Bottom Line: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion.This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins.Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China. mayibao@163.com

ABSTRACT

Background: The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki.

Results: There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date.

Conclusion: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

Show MeSH