Limits...
Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal.

Ma Y, Zhao R, He Y, Li S, Liu J, Wu Y, Cao Z, Li W - BMC Genomics (2009)

Bottom Line: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion.This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins.Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China. mayibao@163.com

ABSTRACT

Background: The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki.

Results: There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date.

Conclusion: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

Show MeSH
N-terminal sequence alignment of SPSVs (serine proteases from scorpion venoms). SJEs are clusters from this work. P0C8M2 is BMK-CBP obtained from the scorpion Mesobuthus martensii.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2713264&req=5

Figure 11: N-terminal sequence alignment of SPSVs (serine proteases from scorpion venoms). SJEs are clusters from this work. P0C8M2 is BMK-CBP obtained from the scorpion Mesobuthus martensii.

Mentions: To date, most studies performed on scorpion venoms have focused on isolation and characterization of neurotoxins and antimicrobial peptides. Although proteolytic enzyme activities have been detected in the venom of several scorpion species for a long time[55,56], the first serine proteinase-like protein has recently been purified and partially sequenced in a screen for drug candidates targeting cancer cells[57]. Two clusters (SJE003C and SJE030C, 78 ESTs) were identified to encode serine proteases from scorpion venoms, here named SPSVs (Figure 11). As their precursors are composed of more than 200 amino acid residues, they represent important parts of the venom proteins with high molecular weight (>20 KDa). SPSVs may be involved in post-translational processing of other venom peptides, and can also function as "spreading factors" in order to facilitate the spread of other venom peptides[56].


Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal.

Ma Y, Zhao R, He Y, Li S, Liu J, Wu Y, Cao Z, Li W - BMC Genomics (2009)

N-terminal sequence alignment of SPSVs (serine proteases from scorpion venoms). SJEs are clusters from this work. P0C8M2 is BMK-CBP obtained from the scorpion Mesobuthus martensii.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2713264&req=5

Figure 11: N-terminal sequence alignment of SPSVs (serine proteases from scorpion venoms). SJEs are clusters from this work. P0C8M2 is BMK-CBP obtained from the scorpion Mesobuthus martensii.
Mentions: To date, most studies performed on scorpion venoms have focused on isolation and characterization of neurotoxins and antimicrobial peptides. Although proteolytic enzyme activities have been detected in the venom of several scorpion species for a long time[55,56], the first serine proteinase-like protein has recently been purified and partially sequenced in a screen for drug candidates targeting cancer cells[57]. Two clusters (SJE003C and SJE030C, 78 ESTs) were identified to encode serine proteases from scorpion venoms, here named SPSVs (Figure 11). As their precursors are composed of more than 200 amino acid residues, they represent important parts of the venom proteins with high molecular weight (>20 KDa). SPSVs may be involved in post-translational processing of other venom peptides, and can also function as "spreading factors" in order to facilitate the spread of other venom peptides[56].

Bottom Line: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion.This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins.Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China. mayibao@163.com

ABSTRACT

Background: The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki.

Results: There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date.

Conclusion: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

Show MeSH