Limits...
Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal.

Ma Y, Zhao R, He Y, Li S, Liu J, Wu Y, Cao Z, Li W - BMC Genomics (2009)

Bottom Line: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion.This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins.Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China. mayibao@163.com

ABSTRACT

Background: The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki.

Results: There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date.

Conclusion: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

Show MeSH
Sequence alignment of anionic peptides. SJEs are clusters from this work. Q5G8B2, Q5G8A9, Q5G8B1, and Q5G8B0 are different anionic peptides from the scorpion Tityus costatus.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2713264&req=5

Figure 10: Sequence alignment of anionic peptides. SJEs are clusters from this work. Q5G8B2, Q5G8A9, Q5G8B1, and Q5G8B0 are different anionic peptides from the scorpion Tityus costatus.

Mentions: Anionic peptides have previously been characterized from Mesobuthus martensii and Tityus costatus, two scorpion species from the family Buthidae[36,54]. As the name suggests, this type of venom peptides are rich in acidic amino acid residues (aspartic acid and glutamic acid). A cluster (SJE089C, 2 ESTs) was identified to encode anionic peptides (Figure 10). It is not clear what their biological role is. As the vast majority of scorpion venom peptides are basic, anionic peptides are suggested to play a part in balancing the pH value of scorpion venom liquid[36].


Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal.

Ma Y, Zhao R, He Y, Li S, Liu J, Wu Y, Cao Z, Li W - BMC Genomics (2009)

Sequence alignment of anionic peptides. SJEs are clusters from this work. Q5G8B2, Q5G8A9, Q5G8B1, and Q5G8B0 are different anionic peptides from the scorpion Tityus costatus.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2713264&req=5

Figure 10: Sequence alignment of anionic peptides. SJEs are clusters from this work. Q5G8B2, Q5G8A9, Q5G8B1, and Q5G8B0 are different anionic peptides from the scorpion Tityus costatus.
Mentions: Anionic peptides have previously been characterized from Mesobuthus martensii and Tityus costatus, two scorpion species from the family Buthidae[36,54]. As the name suggests, this type of venom peptides are rich in acidic amino acid residues (aspartic acid and glutamic acid). A cluster (SJE089C, 2 ESTs) was identified to encode anionic peptides (Figure 10). It is not clear what their biological role is. As the vast majority of scorpion venom peptides are basic, anionic peptides are suggested to play a part in balancing the pH value of scorpion venom liquid[36].

Bottom Line: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion.This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins.Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China. mayibao@163.com

ABSTRACT

Background: The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki.

Results: There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. Great diversity is observed in primary sequences of most highly expressed types. The most highly expressed types are cytolytic peptides and serine proteases. Neurotoxins specific for sodium channels, which are major groups of venom components from Buthidae scorpions, are not detected in this study. In addition to those known types of venom peptides and proteins, we also obtain nine atypical types of venom molecules which haven't been observed in any other scorpion species studied to date.

Conclusion: This work provides the first set of cDNAs from Scorpiops jendeki, and one of the few transcriptomic analyses from a scorpion. This allows the characterization of a large number of venom molecules, belonging to either known or atypical types of scorpion venom peptides and proteins. Besides, our work could provide some clues to the evolution of the scorpion venom arsenal by comparison with venom data from other scorpion lineages.

Show MeSH