Limits...
Trace elements in hemodialysis patients: a systematic review and meta-analysis.

Tonelli M, Wiebe N, Hemmelgarn B, Klarenbach S, Field C, Manns B, Thadhani R, Gill J, Alberta Kidney Disease Netwo - BMC Med (2009)

Bottom Line: Available data suggested that levels of cadmium, chromium, copper, lead, and vanadium were higher and that levels of selenium, zinc and manganese were lower in hemodialysis patients, compared with controls.Pooled standard mean differences exceeded 0.8 standard deviation units (a large difference) higher than controls for cadmium, chromium, vanadium, and lower than controls for selenium, zinc, and manganese.No studies reported data on antimony, iodine, tellurium, and thallium concentrations.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Medicine, University of Alberta, Edmonton, Alberta, Canada. mtonelli-admin@med.ualberta.ca

ABSTRACT

Background: Hemodialysis patients are at risk for deficiency of essential trace elements and excess of toxic trace elements, both of which can affect health. We conducted a systematic review to summarize existing literature on trace element status in hemodialysis patients.

Methods: All studies which reported relevant data for chronic hemodialysis patients and a healthy control population were eligible, regardless of language or publication status. We included studies which measured at least one of the following elements in whole blood, serum, or plasma: antimony, arsenic, boron, cadmium, chromium, cobalt, copper, fluorine, iodine, lead, manganese, mercury, molybdenum, nickel, selenium, tellurium, thallium, vanadium, and zinc. We calculated differences between hemodialysis patients and controls using the differences in mean trace element level, divided by the pooled standard deviation.

Results: We identified 128 eligible studies. Available data suggested that levels of cadmium, chromium, copper, lead, and vanadium were higher and that levels of selenium, zinc and manganese were lower in hemodialysis patients, compared with controls. Pooled standard mean differences exceeded 0.8 standard deviation units (a large difference) higher than controls for cadmium, chromium, vanadium, and lower than controls for selenium, zinc, and manganese. No studies reported data on antimony, iodine, tellurium, and thallium concentrations.

Conclusion: Average blood levels of biologically important trace elements were substantially different in hemodialysis patients, compared with healthy controls. Since both deficiency and excess of trace elements are potentially harmful yet amenable to therapy, the hypothesis that trace element status influences the risk of adverse clinical outcomes is worthy of investigation.

Show MeSH
Standardized mean differences of trace element concentrations: hemodialysis participants versus healthy controls. The small solid gray diamonds represent the standardized mean difference (SMD) in trace element concentrations between hemodialysis patients and controls (for each individual study). The large red crosses represent the random-effects pooled SMDs. Results were pooled only for trace elements that were measured in at least three studies and for which the sign test was statistically significant. The shaded gray region denotes SMD representing differences between hemodialysis patients and controls, which are moderate or small (<0.8 standard deviation). Data points outside the gray region represent large differences between hemodialysis patients and controls (SMD ≥0.8 standard deviation).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2698829&req=5

Figure 2: Standardized mean differences of trace element concentrations: hemodialysis participants versus healthy controls. The small solid gray diamonds represent the standardized mean difference (SMD) in trace element concentrations between hemodialysis patients and controls (for each individual study). The large red crosses represent the random-effects pooled SMDs. Results were pooled only for trace elements that were measured in at least three studies and for which the sign test was statistically significant. The shaded gray region denotes SMD representing differences between hemodialysis patients and controls, which are moderate or small (<0.8 standard deviation). Data points outside the gray region represent large differences between hemodialysis patients and controls (SMD ≥0.8 standard deviation).

Mentions: Data were available for arsenic, boron, cadmium, chromium, cobalt, copper, fluorine, lead manganese, mercury, molybdenum, nickel, selenium, vanadium, and zinc. The pooled results comparing trace element status for hemodialysis patients with controls are presented in Table 1 and Figure 2. Results stratified by sample source (whole blood, serum, or plasma), or repeated using a fixed-effect model were consistent (data not shown). Available data suggested that levels of cadmium, chromium, copper, lead, and vanadium were higher and that levels of manganese, selenium, and zinc were lower in hemodialysis patients, compared with controls (Table 2). The magnitude of these differences was large (>0.8 SD units) for cadmium, chromium, vanadium, selenium, zinc, and manganese.


Trace elements in hemodialysis patients: a systematic review and meta-analysis.

Tonelli M, Wiebe N, Hemmelgarn B, Klarenbach S, Field C, Manns B, Thadhani R, Gill J, Alberta Kidney Disease Netwo - BMC Med (2009)

Standardized mean differences of trace element concentrations: hemodialysis participants versus healthy controls. The small solid gray diamonds represent the standardized mean difference (SMD) in trace element concentrations between hemodialysis patients and controls (for each individual study). The large red crosses represent the random-effects pooled SMDs. Results were pooled only for trace elements that were measured in at least three studies and for which the sign test was statistically significant. The shaded gray region denotes SMD representing differences between hemodialysis patients and controls, which are moderate or small (<0.8 standard deviation). Data points outside the gray region represent large differences between hemodialysis patients and controls (SMD ≥0.8 standard deviation).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2698829&req=5

Figure 2: Standardized mean differences of trace element concentrations: hemodialysis participants versus healthy controls. The small solid gray diamonds represent the standardized mean difference (SMD) in trace element concentrations between hemodialysis patients and controls (for each individual study). The large red crosses represent the random-effects pooled SMDs. Results were pooled only for trace elements that were measured in at least three studies and for which the sign test was statistically significant. The shaded gray region denotes SMD representing differences between hemodialysis patients and controls, which are moderate or small (<0.8 standard deviation). Data points outside the gray region represent large differences between hemodialysis patients and controls (SMD ≥0.8 standard deviation).
Mentions: Data were available for arsenic, boron, cadmium, chromium, cobalt, copper, fluorine, lead manganese, mercury, molybdenum, nickel, selenium, vanadium, and zinc. The pooled results comparing trace element status for hemodialysis patients with controls are presented in Table 1 and Figure 2. Results stratified by sample source (whole blood, serum, or plasma), or repeated using a fixed-effect model were consistent (data not shown). Available data suggested that levels of cadmium, chromium, copper, lead, and vanadium were higher and that levels of manganese, selenium, and zinc were lower in hemodialysis patients, compared with controls (Table 2). The magnitude of these differences was large (>0.8 SD units) for cadmium, chromium, vanadium, selenium, zinc, and manganese.

Bottom Line: Available data suggested that levels of cadmium, chromium, copper, lead, and vanadium were higher and that levels of selenium, zinc and manganese were lower in hemodialysis patients, compared with controls.Pooled standard mean differences exceeded 0.8 standard deviation units (a large difference) higher than controls for cadmium, chromium, vanadium, and lower than controls for selenium, zinc, and manganese.No studies reported data on antimony, iodine, tellurium, and thallium concentrations.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Medicine, University of Alberta, Edmonton, Alberta, Canada. mtonelli-admin@med.ualberta.ca

ABSTRACT

Background: Hemodialysis patients are at risk for deficiency of essential trace elements and excess of toxic trace elements, both of which can affect health. We conducted a systematic review to summarize existing literature on trace element status in hemodialysis patients.

Methods: All studies which reported relevant data for chronic hemodialysis patients and a healthy control population were eligible, regardless of language or publication status. We included studies which measured at least one of the following elements in whole blood, serum, or plasma: antimony, arsenic, boron, cadmium, chromium, cobalt, copper, fluorine, iodine, lead, manganese, mercury, molybdenum, nickel, selenium, tellurium, thallium, vanadium, and zinc. We calculated differences between hemodialysis patients and controls using the differences in mean trace element level, divided by the pooled standard deviation.

Results: We identified 128 eligible studies. Available data suggested that levels of cadmium, chromium, copper, lead, and vanadium were higher and that levels of selenium, zinc and manganese were lower in hemodialysis patients, compared with controls. Pooled standard mean differences exceeded 0.8 standard deviation units (a large difference) higher than controls for cadmium, chromium, vanadium, and lower than controls for selenium, zinc, and manganese. No studies reported data on antimony, iodine, tellurium, and thallium concentrations.

Conclusion: Average blood levels of biologically important trace elements were substantially different in hemodialysis patients, compared with healthy controls. Since both deficiency and excess of trace elements are potentially harmful yet amenable to therapy, the hypothesis that trace element status influences the risk of adverse clinical outcomes is worthy of investigation.

Show MeSH