Limits...
Systemic disease-induced salivary biomarker profiles in mouse models of melanoma and non-small cell lung cancer.

Gao K, Zhou H, Zhang L, Lee JW, Zhou Q, Hu S, Wolinsky LE, Farrell J, Eibl G, Wong DT - PLoS ONE (2009)

Bottom Line: Saliva (oral fluids) is an emerging biofluid poised for detection of clinical diseases.Taken together, our data support the conclusion that upon systemic disease development, significant changes can occur in the salivary biomarker profile.Although the origins of the disease-induced salivary biomarkers may be both systemic and local, stimulation of salivary gland by mediators released from remote tumors plays an important role in regulating the salivary surrogate biomarker profiles.

View Article: PubMed Central - PubMed

Affiliation: School of Dentistry & Dental Research Institute, University of California Los Angeles, Los Angeles, CA, USA.

ABSTRACT

Background: Saliva (oral fluids) is an emerging biofluid poised for detection of clinical diseases. Although the rationale for oral diseases applications (e.g. oral cancer) is intuitive, the rationale and relationship between systemic diseases and saliva biomarkers are unclear.

Methodology/principal findings: In this study, we used mouse models of melanoma and non-small cell lung cancer and compared the transcriptome biomarker profiles of tumor-bearing mice to those of control mice. Microarray analysis showed that salivary transcriptomes were significantly altered in tumor-bearing mice vs. controls. Significant overlapping among transcriptomes of mouse tumors, serum, salivary glands and saliva suggests that salivary biomarkers have multiple origins. Furthermore, we identified that the expression of two groups of significantly altered transcription factors (TFs) Runx1, Mlxipl, Trim30 and Egr1, Tbx1, Nr1d1 in salivary gland tissue of melanoma-bearing mice can potentially be responsible for 82.6% of the up-regulated gene expression and 62.5% of the down-regulated gene expression, respectively, in the saliva of melanoma-bearing mice. We also showed that the ectopic production of nerve growth factor (NGF) in the melanoma tumor tissue as a tumor-released mediator can induce expression of the TF Egr-1 in the salivary gland.

Conclusions: Taken together, our data support the conclusion that upon systemic disease development, significant changes can occur in the salivary biomarker profile. Although the origins of the disease-induced salivary biomarkers may be both systemic and local, stimulation of salivary gland by mediators released from remote tumors plays an important role in regulating the salivary surrogate biomarker profiles.

Show MeSH

Related in: MedlinePlus

Transcription factors (TFs) in the salivary gland were up-regulated and correlated with the expression of a number of genes in saliva of the melanoma mouse model.A, The 6 TFs (Runx1, Trim30, Mlxipl, Egr1, Nr1d1, TBX1) are significantly expressed higher in the salivary gland of melanoma-bearing mice vs. control mice (P<0.05, Table S1). B, mRNA expression levels of these 6 TFs (Runx1, Trim30, Mlxipl, Egr1, Nr1d1, TBX1) in the salivary gland of melanoma mice vs. that of normal mice validated by qRCR. The horizontal dashed line indicates the levels of gene expression in control mice, which is arbitrarily set to 1. The columns represent gene expression levels in the salivary gland of melanoma mice relative to control mice. Experiments were done in triplicates; bars, SD. C, Expression levels of five TFs (Runx1, Mlxipl, Egr1, Nr1d1, and TBX1) in the salivary gland tissues of control mice and melanoma mice were measured by immunoblotting. (C1, C2, C3 and T1, T2, T3 are the same batch of tissues used in the microarray assay). Note that commercial antibody was not available for murine Trim30. D, Relative protein expression levels of the above five TFs in melanoma mice vs. control mice. Signal intensity of the blot in Figure 4C was quantified by Image J software (NIH). The horizontal dashed line indicates the expression levels of these 5 TFs in control mice, which is arbitrarily set to 1. Columns show that the relative protein levels of the 5 TFs in tumor-bearing mice comparing to control mice; bars, SD. E and F, The expression of 6 TFs (Runx1, Trim30, Mlxipl, Egr1, Nr1d1, TBX1) in the salivary gland of melanoma mice were correlated with differentiated gene expression in the mouse saliva. Three of them (Runx1, Trim30 and Mlxipl) can be potentially responsible for 180, 35 and 16 of the up-regulated salivary transcripts in melanoma mice (P<0.05), respectively, while the other 3 TFs (Egr1, Tbx1 and Nr1d1) are potentially correlated with 119, 116 and 77 down-regulated salivary transcripts (P<0.05). G, The expression of the 3 TFs (Runx1, Trim30 and Mlxipl) totally correlated with 82.6% ((180+5+1)/225 = 82.6%) up-regulated gene expression in melanoma mouse saliva by overlapping all salivary genes which are correlated with these 3 TFs from Fig. 4E. H, The expression of the other 3 TFs (Egr1, TBX1 and Nr1d1) totally correlated with 62.5% ((119+58+2+73)/403 = 62.5%) down-regulated gene expression in the saliva of melanoma mice by overlapping all salivary genes which are correlated with these 3 TFs from Fig. 4F.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2691577&req=5

pone-0005875-g004: Transcription factors (TFs) in the salivary gland were up-regulated and correlated with the expression of a number of genes in saliva of the melanoma mouse model.A, The 6 TFs (Runx1, Trim30, Mlxipl, Egr1, Nr1d1, TBX1) are significantly expressed higher in the salivary gland of melanoma-bearing mice vs. control mice (P<0.05, Table S1). B, mRNA expression levels of these 6 TFs (Runx1, Trim30, Mlxipl, Egr1, Nr1d1, TBX1) in the salivary gland of melanoma mice vs. that of normal mice validated by qRCR. The horizontal dashed line indicates the levels of gene expression in control mice, which is arbitrarily set to 1. The columns represent gene expression levels in the salivary gland of melanoma mice relative to control mice. Experiments were done in triplicates; bars, SD. C, Expression levels of five TFs (Runx1, Mlxipl, Egr1, Nr1d1, and TBX1) in the salivary gland tissues of control mice and melanoma mice were measured by immunoblotting. (C1, C2, C3 and T1, T2, T3 are the same batch of tissues used in the microarray assay). Note that commercial antibody was not available for murine Trim30. D, Relative protein expression levels of the above five TFs in melanoma mice vs. control mice. Signal intensity of the blot in Figure 4C was quantified by Image J software (NIH). The horizontal dashed line indicates the expression levels of these 5 TFs in control mice, which is arbitrarily set to 1. Columns show that the relative protein levels of the 5 TFs in tumor-bearing mice comparing to control mice; bars, SD. E and F, The expression of 6 TFs (Runx1, Trim30, Mlxipl, Egr1, Nr1d1, TBX1) in the salivary gland of melanoma mice were correlated with differentiated gene expression in the mouse saliva. Three of them (Runx1, Trim30 and Mlxipl) can be potentially responsible for 180, 35 and 16 of the up-regulated salivary transcripts in melanoma mice (P<0.05), respectively, while the other 3 TFs (Egr1, Tbx1 and Nr1d1) are potentially correlated with 119, 116 and 77 down-regulated salivary transcripts (P<0.05). G, The expression of the 3 TFs (Runx1, Trim30 and Mlxipl) totally correlated with 82.6% ((180+5+1)/225 = 82.6%) up-regulated gene expression in melanoma mouse saliva by overlapping all salivary genes which are correlated with these 3 TFs from Fig. 4E. H, The expression of the other 3 TFs (Egr1, TBX1 and Nr1d1) totally correlated with 62.5% ((119+58+2+73)/403 = 62.5%) down-regulated gene expression in the saliva of melanoma mice by overlapping all salivary genes which are correlated with these 3 TFs from Fig. 4F.

Mentions: We first compared the gene expression profiles of salivary gland tissues in melanoma-bearing mice with control mice and identified a list of 46 significantly up-regulated TFs (fold change>2 and P<0.05) (Table S1). We then calculated the correlation coefficients between the expression profiles of these significantly altered TFs and the differentially expressed genes (both up- and down-regulated) in the saliva of the melanoma-bearing mice. The TFs were then ranked by the number of highly co-expressed genes whose correlation with the TF expression is >0.5. The 6 up-regulated TFs with highest ranking were RunX1 (runt related transcription factor 1), MLXIPL (musculus MLX interacting protein-like) and TRIM30 (tripartite motif protein 30) for upregulated salivary genes and Egr1 (Early growth factor-1), Tbx1 (T-box 1) and Nr1d1 (musculus nuclear receptor subfamily 1, group D, member 1) for down regulated salivary genes (Fig. 4A, E, F).


Systemic disease-induced salivary biomarker profiles in mouse models of melanoma and non-small cell lung cancer.

Gao K, Zhou H, Zhang L, Lee JW, Zhou Q, Hu S, Wolinsky LE, Farrell J, Eibl G, Wong DT - PLoS ONE (2009)

Transcription factors (TFs) in the salivary gland were up-regulated and correlated with the expression of a number of genes in saliva of the melanoma mouse model.A, The 6 TFs (Runx1, Trim30, Mlxipl, Egr1, Nr1d1, TBX1) are significantly expressed higher in the salivary gland of melanoma-bearing mice vs. control mice (P<0.05, Table S1). B, mRNA expression levels of these 6 TFs (Runx1, Trim30, Mlxipl, Egr1, Nr1d1, TBX1) in the salivary gland of melanoma mice vs. that of normal mice validated by qRCR. The horizontal dashed line indicates the levels of gene expression in control mice, which is arbitrarily set to 1. The columns represent gene expression levels in the salivary gland of melanoma mice relative to control mice. Experiments were done in triplicates; bars, SD. C, Expression levels of five TFs (Runx1, Mlxipl, Egr1, Nr1d1, and TBX1) in the salivary gland tissues of control mice and melanoma mice were measured by immunoblotting. (C1, C2, C3 and T1, T2, T3 are the same batch of tissues used in the microarray assay). Note that commercial antibody was not available for murine Trim30. D, Relative protein expression levels of the above five TFs in melanoma mice vs. control mice. Signal intensity of the blot in Figure 4C was quantified by Image J software (NIH). The horizontal dashed line indicates the expression levels of these 5 TFs in control mice, which is arbitrarily set to 1. Columns show that the relative protein levels of the 5 TFs in tumor-bearing mice comparing to control mice; bars, SD. E and F, The expression of 6 TFs (Runx1, Trim30, Mlxipl, Egr1, Nr1d1, TBX1) in the salivary gland of melanoma mice were correlated with differentiated gene expression in the mouse saliva. Three of them (Runx1, Trim30 and Mlxipl) can be potentially responsible for 180, 35 and 16 of the up-regulated salivary transcripts in melanoma mice (P<0.05), respectively, while the other 3 TFs (Egr1, Tbx1 and Nr1d1) are potentially correlated with 119, 116 and 77 down-regulated salivary transcripts (P<0.05). G, The expression of the 3 TFs (Runx1, Trim30 and Mlxipl) totally correlated with 82.6% ((180+5+1)/225 = 82.6%) up-regulated gene expression in melanoma mouse saliva by overlapping all salivary genes which are correlated with these 3 TFs from Fig. 4E. H, The expression of the other 3 TFs (Egr1, TBX1 and Nr1d1) totally correlated with 62.5% ((119+58+2+73)/403 = 62.5%) down-regulated gene expression in the saliva of melanoma mice by overlapping all salivary genes which are correlated with these 3 TFs from Fig. 4F.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2691577&req=5

pone-0005875-g004: Transcription factors (TFs) in the salivary gland were up-regulated and correlated with the expression of a number of genes in saliva of the melanoma mouse model.A, The 6 TFs (Runx1, Trim30, Mlxipl, Egr1, Nr1d1, TBX1) are significantly expressed higher in the salivary gland of melanoma-bearing mice vs. control mice (P<0.05, Table S1). B, mRNA expression levels of these 6 TFs (Runx1, Trim30, Mlxipl, Egr1, Nr1d1, TBX1) in the salivary gland of melanoma mice vs. that of normal mice validated by qRCR. The horizontal dashed line indicates the levels of gene expression in control mice, which is arbitrarily set to 1. The columns represent gene expression levels in the salivary gland of melanoma mice relative to control mice. Experiments were done in triplicates; bars, SD. C, Expression levels of five TFs (Runx1, Mlxipl, Egr1, Nr1d1, and TBX1) in the salivary gland tissues of control mice and melanoma mice were measured by immunoblotting. (C1, C2, C3 and T1, T2, T3 are the same batch of tissues used in the microarray assay). Note that commercial antibody was not available for murine Trim30. D, Relative protein expression levels of the above five TFs in melanoma mice vs. control mice. Signal intensity of the blot in Figure 4C was quantified by Image J software (NIH). The horizontal dashed line indicates the expression levels of these 5 TFs in control mice, which is arbitrarily set to 1. Columns show that the relative protein levels of the 5 TFs in tumor-bearing mice comparing to control mice; bars, SD. E and F, The expression of 6 TFs (Runx1, Trim30, Mlxipl, Egr1, Nr1d1, TBX1) in the salivary gland of melanoma mice were correlated with differentiated gene expression in the mouse saliva. Three of them (Runx1, Trim30 and Mlxipl) can be potentially responsible for 180, 35 and 16 of the up-regulated salivary transcripts in melanoma mice (P<0.05), respectively, while the other 3 TFs (Egr1, Tbx1 and Nr1d1) are potentially correlated with 119, 116 and 77 down-regulated salivary transcripts (P<0.05). G, The expression of the 3 TFs (Runx1, Trim30 and Mlxipl) totally correlated with 82.6% ((180+5+1)/225 = 82.6%) up-regulated gene expression in melanoma mouse saliva by overlapping all salivary genes which are correlated with these 3 TFs from Fig. 4E. H, The expression of the other 3 TFs (Egr1, TBX1 and Nr1d1) totally correlated with 62.5% ((119+58+2+73)/403 = 62.5%) down-regulated gene expression in the saliva of melanoma mice by overlapping all salivary genes which are correlated with these 3 TFs from Fig. 4F.
Mentions: We first compared the gene expression profiles of salivary gland tissues in melanoma-bearing mice with control mice and identified a list of 46 significantly up-regulated TFs (fold change>2 and P<0.05) (Table S1). We then calculated the correlation coefficients between the expression profiles of these significantly altered TFs and the differentially expressed genes (both up- and down-regulated) in the saliva of the melanoma-bearing mice. The TFs were then ranked by the number of highly co-expressed genes whose correlation with the TF expression is >0.5. The 6 up-regulated TFs with highest ranking were RunX1 (runt related transcription factor 1), MLXIPL (musculus MLX interacting protein-like) and TRIM30 (tripartite motif protein 30) for upregulated salivary genes and Egr1 (Early growth factor-1), Tbx1 (T-box 1) and Nr1d1 (musculus nuclear receptor subfamily 1, group D, member 1) for down regulated salivary genes (Fig. 4A, E, F).

Bottom Line: Saliva (oral fluids) is an emerging biofluid poised for detection of clinical diseases.Taken together, our data support the conclusion that upon systemic disease development, significant changes can occur in the salivary biomarker profile.Although the origins of the disease-induced salivary biomarkers may be both systemic and local, stimulation of salivary gland by mediators released from remote tumors plays an important role in regulating the salivary surrogate biomarker profiles.

View Article: PubMed Central - PubMed

Affiliation: School of Dentistry & Dental Research Institute, University of California Los Angeles, Los Angeles, CA, USA.

ABSTRACT

Background: Saliva (oral fluids) is an emerging biofluid poised for detection of clinical diseases. Although the rationale for oral diseases applications (e.g. oral cancer) is intuitive, the rationale and relationship between systemic diseases and saliva biomarkers are unclear.

Methodology/principal findings: In this study, we used mouse models of melanoma and non-small cell lung cancer and compared the transcriptome biomarker profiles of tumor-bearing mice to those of control mice. Microarray analysis showed that salivary transcriptomes were significantly altered in tumor-bearing mice vs. controls. Significant overlapping among transcriptomes of mouse tumors, serum, salivary glands and saliva suggests that salivary biomarkers have multiple origins. Furthermore, we identified that the expression of two groups of significantly altered transcription factors (TFs) Runx1, Mlxipl, Trim30 and Egr1, Tbx1, Nr1d1 in salivary gland tissue of melanoma-bearing mice can potentially be responsible for 82.6% of the up-regulated gene expression and 62.5% of the down-regulated gene expression, respectively, in the saliva of melanoma-bearing mice. We also showed that the ectopic production of nerve growth factor (NGF) in the melanoma tumor tissue as a tumor-released mediator can induce expression of the TF Egr-1 in the salivary gland.

Conclusions: Taken together, our data support the conclusion that upon systemic disease development, significant changes can occur in the salivary biomarker profile. Although the origins of the disease-induced salivary biomarkers may be both systemic and local, stimulation of salivary gland by mediators released from remote tumors plays an important role in regulating the salivary surrogate biomarker profiles.

Show MeSH
Related in: MedlinePlus