Limits...
Cereal and nonfat milk support muscle recovery following exercise.

Kammer L, Ding Z, Wang B, Hara D, Liao YH, Ivy JL - J Int Soc Sports Nutr (2009)

Bottom Line: At Post60, blood glucose was similar between treatments (Drink 6.1 +/- 0.3, Cereal 5.6 +/- 0.2 mmol/L, p < .05), but after Cereal, plasma insulin was significantly higher (Drink 123.1 +/- 11.8, Cereal 191.0 +/- 12.3 pmol/L, p < .05), and plasma lactate significantly lower (Drink 1.4 +/- 0.1, Cereal 1.00 +/- 0.1 mmol/L, p < .05).Significant Post0 to Post60 changes occurred in glycogen (Drink 52.4 +/- 7.0 to 58.6 +/- 6.9, Cereal 58.7 +/- 9.6 to 66.0 +/- 10.0 mumol/g, p < .05) and rpS6 (Drink 17.9 +/- 2.5 to 35.2 +/- 4.9, Cereal 18.6 +/- 2.2 to 35.4 +/- 4.4 %Std, p < .05) for each treatment, but only Cereal significantly affected glycogen synthase (Drink 66.6 +/- 6.9 to 64.9 +/- 6.9, Cereal 61.1 +/- 8.0 to 54.2 +/- 7.2%Std, p < .05), Akt (Drink 57.9 +/- 3.2 to 55.7 +/- 3.1, Cereal 53.2 +/- 4.1 to 60.5 +/- 3.7 %Std, p < .05) and mTOR (Drink 28.7 +/- 4.4 to 35.4 +/- 4.5, Cereal 23.0 +/- 3.1 to 42.2 +/- 2.5 %Std, p < .05). eIF4E was unchanged after both treatments.These results suggest that Cereal is as good as a commercially-available sports drink in initiating post-exercise muscle recovery.

View Article: PubMed Central - HTML - PubMed

Affiliation: Exercise Physiology and Metabolism Laboratory Department of Kinesiology and Health Education The University of Texas at Austin Austin, TX, USA. lynnek@mail.utexas.edu.

ABSTRACT

Background: This study compared the effects of ingesting cereal and nonfat milk (Cereal) and a carbohydrate-electrolyte sports drink (Drink) immediately following endurance exercise on muscle glycogen synthesis and the phosphorylation state of proteins controlling protein synthesis: Akt, mTOR, rpS6 and eIF4E.

Methods: Trained cyclists or triathletes (8 male: 28.0 +/- 1.6 yrs, 1.8 +/- 0.0 m, 75.4 +/- 3.2 kg, 61.0 +/- 1.6 ml O2*kg-1*min-1; 4 female: 25.3 +/- 1.7 yrs, 1.7 +/- 0.0 m, 66.9 +/- 4.6 kg, 46.4 +/- 1.2 mlO2*kg-1*min-1) completed two randomly-ordered trials serving as their own controls. After 2 hours of cycling at 60-65% VO2MAX, a biopsy from the vastus lateralis was obtained (Post0), then subjects consumed either Drink (78.5 g carbohydrate) or Cereal (77 g carbohydrate, 19.5 g protein and 2.7 g fat). Blood was drawn before and at the end of exercise, and at 15, 30 and 60 minutes after treatment. A second biopsy was taken 60 minutes after supplementation (Post60). Differences within and between treatments were tested using repeated measures ANOVA.

Results: At Post60, blood glucose was similar between treatments (Drink 6.1 +/- 0.3, Cereal 5.6 +/- 0.2 mmol/L, p < .05), but after Cereal, plasma insulin was significantly higher (Drink 123.1 +/- 11.8, Cereal 191.0 +/- 12.3 pmol/L, p < .05), and plasma lactate significantly lower (Drink 1.4 +/- 0.1, Cereal 1.00 +/- 0.1 mmol/L, p < .05). Except for higher phosphorylation of mTOR after Cereal, glycogen and muscle proteins were not statistically different between treatments. Significant Post0 to Post60 changes occurred in glycogen (Drink 52.4 +/- 7.0 to 58.6 +/- 6.9, Cereal 58.7 +/- 9.6 to 66.0 +/- 10.0 mumol/g, p < .05) and rpS6 (Drink 17.9 +/- 2.5 to 35.2 +/- 4.9, Cereal 18.6 +/- 2.2 to 35.4 +/- 4.4 %Std, p < .05) for each treatment, but only Cereal significantly affected glycogen synthase (Drink 66.6 +/- 6.9 to 64.9 +/- 6.9, Cereal 61.1 +/- 8.0 to 54.2 +/- 7.2%Std, p < .05), Akt (Drink 57.9 +/- 3.2 to 55.7 +/- 3.1, Cereal 53.2 +/- 4.1 to 60.5 +/- 3.7 %Std, p < .05) and mTOR (Drink 28.7 +/- 4.4 to 35.4 +/- 4.5, Cereal 23.0 +/- 3.1 to 42.2 +/- 2.5 %Std, p < .05). eIF4E was unchanged after both treatments.

Conclusion: These results suggest that Cereal is as good as a commercially-available sports drink in initiating post-exercise muscle recovery.

No MeSH data available.


Study protocol.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2691397&req=5

Figure 1: Study protocol.

Mentions: Subjects reported to the lab in the morning at 7 am after a 12-hour fast. Food and exercise logs, and pre-exercise weight were collected. The heart rate monitor was secured against the participant's chest and the watch receiver mounted on the handlebars. Next, a 20-gauge Teflon catheter was inserted into a large forearm vein. The participant sat quietly on the ergometer for approximately 2 minutes and a resting 5 ml blood sample (Pre) and heart rate were collected (Figure 1).


Cereal and nonfat milk support muscle recovery following exercise.

Kammer L, Ding Z, Wang B, Hara D, Liao YH, Ivy JL - J Int Soc Sports Nutr (2009)

Study protocol.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2691397&req=5

Figure 1: Study protocol.
Mentions: Subjects reported to the lab in the morning at 7 am after a 12-hour fast. Food and exercise logs, and pre-exercise weight were collected. The heart rate monitor was secured against the participant's chest and the watch receiver mounted on the handlebars. Next, a 20-gauge Teflon catheter was inserted into a large forearm vein. The participant sat quietly on the ergometer for approximately 2 minutes and a resting 5 ml blood sample (Pre) and heart rate were collected (Figure 1).

Bottom Line: At Post60, blood glucose was similar between treatments (Drink 6.1 +/- 0.3, Cereal 5.6 +/- 0.2 mmol/L, p < .05), but after Cereal, plasma insulin was significantly higher (Drink 123.1 +/- 11.8, Cereal 191.0 +/- 12.3 pmol/L, p < .05), and plasma lactate significantly lower (Drink 1.4 +/- 0.1, Cereal 1.00 +/- 0.1 mmol/L, p < .05).Significant Post0 to Post60 changes occurred in glycogen (Drink 52.4 +/- 7.0 to 58.6 +/- 6.9, Cereal 58.7 +/- 9.6 to 66.0 +/- 10.0 mumol/g, p < .05) and rpS6 (Drink 17.9 +/- 2.5 to 35.2 +/- 4.9, Cereal 18.6 +/- 2.2 to 35.4 +/- 4.4 %Std, p < .05) for each treatment, but only Cereal significantly affected glycogen synthase (Drink 66.6 +/- 6.9 to 64.9 +/- 6.9, Cereal 61.1 +/- 8.0 to 54.2 +/- 7.2%Std, p < .05), Akt (Drink 57.9 +/- 3.2 to 55.7 +/- 3.1, Cereal 53.2 +/- 4.1 to 60.5 +/- 3.7 %Std, p < .05) and mTOR (Drink 28.7 +/- 4.4 to 35.4 +/- 4.5, Cereal 23.0 +/- 3.1 to 42.2 +/- 2.5 %Std, p < .05). eIF4E was unchanged after both treatments.These results suggest that Cereal is as good as a commercially-available sports drink in initiating post-exercise muscle recovery.

View Article: PubMed Central - HTML - PubMed

Affiliation: Exercise Physiology and Metabolism Laboratory Department of Kinesiology and Health Education The University of Texas at Austin Austin, TX, USA. lynnek@mail.utexas.edu.

ABSTRACT

Background: This study compared the effects of ingesting cereal and nonfat milk (Cereal) and a carbohydrate-electrolyte sports drink (Drink) immediately following endurance exercise on muscle glycogen synthesis and the phosphorylation state of proteins controlling protein synthesis: Akt, mTOR, rpS6 and eIF4E.

Methods: Trained cyclists or triathletes (8 male: 28.0 +/- 1.6 yrs, 1.8 +/- 0.0 m, 75.4 +/- 3.2 kg, 61.0 +/- 1.6 ml O2*kg-1*min-1; 4 female: 25.3 +/- 1.7 yrs, 1.7 +/- 0.0 m, 66.9 +/- 4.6 kg, 46.4 +/- 1.2 mlO2*kg-1*min-1) completed two randomly-ordered trials serving as their own controls. After 2 hours of cycling at 60-65% VO2MAX, a biopsy from the vastus lateralis was obtained (Post0), then subjects consumed either Drink (78.5 g carbohydrate) or Cereal (77 g carbohydrate, 19.5 g protein and 2.7 g fat). Blood was drawn before and at the end of exercise, and at 15, 30 and 60 minutes after treatment. A second biopsy was taken 60 minutes after supplementation (Post60). Differences within and between treatments were tested using repeated measures ANOVA.

Results: At Post60, blood glucose was similar between treatments (Drink 6.1 +/- 0.3, Cereal 5.6 +/- 0.2 mmol/L, p < .05), but after Cereal, plasma insulin was significantly higher (Drink 123.1 +/- 11.8, Cereal 191.0 +/- 12.3 pmol/L, p < .05), and plasma lactate significantly lower (Drink 1.4 +/- 0.1, Cereal 1.00 +/- 0.1 mmol/L, p < .05). Except for higher phosphorylation of mTOR after Cereal, glycogen and muscle proteins were not statistically different between treatments. Significant Post0 to Post60 changes occurred in glycogen (Drink 52.4 +/- 7.0 to 58.6 +/- 6.9, Cereal 58.7 +/- 9.6 to 66.0 +/- 10.0 mumol/g, p < .05) and rpS6 (Drink 17.9 +/- 2.5 to 35.2 +/- 4.9, Cereal 18.6 +/- 2.2 to 35.4 +/- 4.4 %Std, p < .05) for each treatment, but only Cereal significantly affected glycogen synthase (Drink 66.6 +/- 6.9 to 64.9 +/- 6.9, Cereal 61.1 +/- 8.0 to 54.2 +/- 7.2%Std, p < .05), Akt (Drink 57.9 +/- 3.2 to 55.7 +/- 3.1, Cereal 53.2 +/- 4.1 to 60.5 +/- 3.7 %Std, p < .05) and mTOR (Drink 28.7 +/- 4.4 to 35.4 +/- 4.5, Cereal 23.0 +/- 3.1 to 42.2 +/- 2.5 %Std, p < .05). eIF4E was unchanged after both treatments.

Conclusion: These results suggest that Cereal is as good as a commercially-available sports drink in initiating post-exercise muscle recovery.

No MeSH data available.