Limits...
Management effectiveness of the world's marine fisheries.

Mora C, Myers RA, Coll M, Libralato S, Pitcher TJ, Sumaila RU, Zeller D, Watson R, Gaston KJ, Worm B - PLoS Biol. (2009)

Bottom Line: Although these initiatives have received broad acceptance, the extent to which corrective measures have been implemented and are effective remains largely unknown.Our survey shows that 7% of all coastal states undergo rigorous scientific assessment for the generation of management policies, 1.4% also have a participatory and transparent processes to convert scientific recommendations into policy, and 0.95% also provide for robust mechanisms to ensure the compliance with regulations; none is also free of the effects of excess fishing capacity, subsidies, or access to foreign fishing.Our results illustrate the great vulnerability of the world's fisheries and the urgent need to meet well-identified guidelines for sustainable management; they also provide a baseline against which future changes can be quantified.

View Article: PubMed Central - PubMed

Affiliation: Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America. cmora@dal.ca

ABSTRACT
Ongoing declines in production of the world's fisheries may have serious ecological and socioeconomic consequences. As a result, a number of international efforts have sought to improve management and prevent overexploitation, while helping to maintain biodiversity and a sustainable food supply. Although these initiatives have received broad acceptance, the extent to which corrective measures have been implemented and are effective remains largely unknown. We used a survey approach, validated with empirical data, and enquiries to over 13,000 fisheries experts (of which 1,188 responded) to assess the current effectiveness of fisheries management regimes worldwide; for each of those regimes, we also calculated the probable sustainability of reported catches to determine how management affects fisheries sustainability. Our survey shows that 7% of all coastal states undergo rigorous scientific assessment for the generation of management policies, 1.4% also have a participatory and transparent processes to convert scientific recommendations into policy, and 0.95% also provide for robust mechanisms to ensure the compliance with regulations; none is also free of the effects of excess fishing capacity, subsidies, or access to foreign fishing. A comparison of fisheries management attributes with the sustainability of reported fisheries catches indicated that the conversion of scientific advice into policy, through a participatory and transparent process, is at the core of achieving fisheries sustainability, regardless of other attributes of the fisheries. Our results illustrate the great vulnerability of the world's fisheries and the urgent need to meet well-identified guidelines for sustainable management; they also provide a baseline against which future changes can be quantified.

Show MeSH

Related in: MedlinePlus

Management effectiveness and sustainability of the world's fisheries.These figures depict the results of experts' opinions on the valuation of scientific robustness (A), policymaking transparency (B), implementation capability (C), subsidies (D), fishing capacity (E) and access to foreign fishing (F). (G) depicts the probability that fisheries in each EEZ are sustainable (Psust) in 2004.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2690453&req=5

pbio-1000131-g003: Management effectiveness and sustainability of the world's fisheries.These figures depict the results of experts' opinions on the valuation of scientific robustness (A), policymaking transparency (B), implementation capability (C), subsidies (D), fishing capacity (E) and access to foreign fishing (F). (G) depicts the probability that fisheries in each EEZ are sustainable (Psust) in 2004.

Mentions: Critical to the success of fisheries management is the scientific basis on which management recommendations are made [18],[19]. Preventing the collapse of fisheries and ecosystem-wide impacts requires scientific advice in which uncertainty is minimized by using skilled personnel, models that include, not only the dynamics of fished stocks, but also their embedded ecosystems, and high-quality and up-to-date data (such that reliable recommendations can be adapted as conditions and stocks fluctuate). Alternatively, the effects of uncertainty can be minimized by applying precautionary approaches in the face of limited knowledge [18],[20]. Of the world's 209 EEZs analyzed, 87% have scientific personnel who are qualified (e.g., with Ph.D.- or Masters-level education, or have participated in training courses or relevant conferences) to perform fisheries assessments and provide science-based management advice (Figure S1A), approximately 7% use holistic models as the basis of management recommendations (i.e., including a broad set of biological and environmental data on fisheries to enable ecosystem-wide understanding of fisheries drivers and impacts; see Figure S1B), 61% carry out frequent assessments to ensure the effectiveness of existing management measures (Figure S1C), and 17% implement precautionary approaches for at least some species (Figure S1D). We summarized all responses that pertain to “scientific robustness” on a linear scale using multidimensional scaling. (Multidimensional scaling is an ordination method that uses the similarities and dissimilarities among responses to reduce the number of variables analyzed. This facilitates the assessment and visualization of patterns from several dimensions into one. Very simplistically, this is analogous to calculating an average of the different scores for each country; see Materials and Methods.) The resulting scale ranged from 0 to 1, and we divided it into four quarters (i.e., from 0 to 0.25, from 0.25 to 0.5, from 0.5 to 0.75, and from 0.75 to 1, with the lowest quarter indicating the worst combination of attributes and the top the best). We found that 7% of all EEZs rank in the top quarter of such a scale (Figure 2, countries depicted in Figure 3A), which account for approximately 9% of the world's fisheries catches and approximately 7% of the world's fished stocks (data are for 2004; see details in Figure S2). Distinguishing between high- and low-income countries using per capita Gross Domestic Product (i.e., 2007 per capita Gross Domestic Product larger or smaller than US$10,000, respectively), we found that high-income countries ranked significantly higher on the scale of scientific robustness (Mann-Whitney U test: p<0.00001, Figure S1E).


Management effectiveness of the world's marine fisheries.

Mora C, Myers RA, Coll M, Libralato S, Pitcher TJ, Sumaila RU, Zeller D, Watson R, Gaston KJ, Worm B - PLoS Biol. (2009)

Management effectiveness and sustainability of the world's fisheries.These figures depict the results of experts' opinions on the valuation of scientific robustness (A), policymaking transparency (B), implementation capability (C), subsidies (D), fishing capacity (E) and access to foreign fishing (F). (G) depicts the probability that fisheries in each EEZ are sustainable (Psust) in 2004.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2690453&req=5

pbio-1000131-g003: Management effectiveness and sustainability of the world's fisheries.These figures depict the results of experts' opinions on the valuation of scientific robustness (A), policymaking transparency (B), implementation capability (C), subsidies (D), fishing capacity (E) and access to foreign fishing (F). (G) depicts the probability that fisheries in each EEZ are sustainable (Psust) in 2004.
Mentions: Critical to the success of fisheries management is the scientific basis on which management recommendations are made [18],[19]. Preventing the collapse of fisheries and ecosystem-wide impacts requires scientific advice in which uncertainty is minimized by using skilled personnel, models that include, not only the dynamics of fished stocks, but also their embedded ecosystems, and high-quality and up-to-date data (such that reliable recommendations can be adapted as conditions and stocks fluctuate). Alternatively, the effects of uncertainty can be minimized by applying precautionary approaches in the face of limited knowledge [18],[20]. Of the world's 209 EEZs analyzed, 87% have scientific personnel who are qualified (e.g., with Ph.D.- or Masters-level education, or have participated in training courses or relevant conferences) to perform fisheries assessments and provide science-based management advice (Figure S1A), approximately 7% use holistic models as the basis of management recommendations (i.e., including a broad set of biological and environmental data on fisheries to enable ecosystem-wide understanding of fisheries drivers and impacts; see Figure S1B), 61% carry out frequent assessments to ensure the effectiveness of existing management measures (Figure S1C), and 17% implement precautionary approaches for at least some species (Figure S1D). We summarized all responses that pertain to “scientific robustness” on a linear scale using multidimensional scaling. (Multidimensional scaling is an ordination method that uses the similarities and dissimilarities among responses to reduce the number of variables analyzed. This facilitates the assessment and visualization of patterns from several dimensions into one. Very simplistically, this is analogous to calculating an average of the different scores for each country; see Materials and Methods.) The resulting scale ranged from 0 to 1, and we divided it into four quarters (i.e., from 0 to 0.25, from 0.25 to 0.5, from 0.5 to 0.75, and from 0.75 to 1, with the lowest quarter indicating the worst combination of attributes and the top the best). We found that 7% of all EEZs rank in the top quarter of such a scale (Figure 2, countries depicted in Figure 3A), which account for approximately 9% of the world's fisheries catches and approximately 7% of the world's fished stocks (data are for 2004; see details in Figure S2). Distinguishing between high- and low-income countries using per capita Gross Domestic Product (i.e., 2007 per capita Gross Domestic Product larger or smaller than US$10,000, respectively), we found that high-income countries ranked significantly higher on the scale of scientific robustness (Mann-Whitney U test: p<0.00001, Figure S1E).

Bottom Line: Although these initiatives have received broad acceptance, the extent to which corrective measures have been implemented and are effective remains largely unknown.Our survey shows that 7% of all coastal states undergo rigorous scientific assessment for the generation of management policies, 1.4% also have a participatory and transparent processes to convert scientific recommendations into policy, and 0.95% also provide for robust mechanisms to ensure the compliance with regulations; none is also free of the effects of excess fishing capacity, subsidies, or access to foreign fishing.Our results illustrate the great vulnerability of the world's fisheries and the urgent need to meet well-identified guidelines for sustainable management; they also provide a baseline against which future changes can be quantified.

View Article: PubMed Central - PubMed

Affiliation: Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America. cmora@dal.ca

ABSTRACT
Ongoing declines in production of the world's fisheries may have serious ecological and socioeconomic consequences. As a result, a number of international efforts have sought to improve management and prevent overexploitation, while helping to maintain biodiversity and a sustainable food supply. Although these initiatives have received broad acceptance, the extent to which corrective measures have been implemented and are effective remains largely unknown. We used a survey approach, validated with empirical data, and enquiries to over 13,000 fisheries experts (of which 1,188 responded) to assess the current effectiveness of fisheries management regimes worldwide; for each of those regimes, we also calculated the probable sustainability of reported catches to determine how management affects fisheries sustainability. Our survey shows that 7% of all coastal states undergo rigorous scientific assessment for the generation of management policies, 1.4% also have a participatory and transparent processes to convert scientific recommendations into policy, and 0.95% also provide for robust mechanisms to ensure the compliance with regulations; none is also free of the effects of excess fishing capacity, subsidies, or access to foreign fishing. A comparison of fisheries management attributes with the sustainability of reported fisheries catches indicated that the conversion of scientific advice into policy, through a participatory and transparent process, is at the core of achieving fisheries sustainability, regardless of other attributes of the fisheries. Our results illustrate the great vulnerability of the world's fisheries and the urgent need to meet well-identified guidelines for sustainable management; they also provide a baseline against which future changes can be quantified.

Show MeSH
Related in: MedlinePlus