Limits...
Increased expression of heat shock protein 105 in rat uterus of early pregnancy and its significance in embryo implantation.

Yuan JX, Xiao LJ, Lu CL, Zhang XS, Liu T, Chen M, Hu ZY, Gao F, Liu YX - Reprod. Biol. Endocrinol. (2009)

Bottom Line: Injection of antisense oligodeoxynucleotides to Hsp105 into pregnant rat uteri was carried out to look at effect of Hsp105 on embryo implantation.Furthermore, injection of antisense oligodeoxynucleotides to Hsp105 into the rat uterine horn on day 3 of pregnancy obviously suppressed the protein expression as expected and reduced number of the implanted embryos as compared with the control.Temporal and spatial changes in Hsp105 expression in pregnant rat uterus may play a physiological role in regulating embryo implantation.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China. yuanjx@ioz.ac.cn

ABSTRACT

Background: Heat shock proteins (Hsps) are a set of highly conserved proteins, Hsp105, has been suggested to play a role in reproduction.

Methods: Spatio-temporal expression of Hsp105 in rat uterus during peri-implantation period was examined by immunohistochemistry and Western blot, pseudopregnant uterus was used as control. Injection of antisense oligodeoxynucleotides to Hsp105 into pregnant rat uteri was carried out to look at effect of Hsp105 on embryo implantation.

Results: Expression of Hsp105 was mainly in the luminal epithelium on day 1 of pregnancy, and reached a peak level on day 5, whereas in stroma cells, adjacent to the implanting embryo, the strongest expression of Hsp105 was observed on day 6. The immunostaining profile in the uterus was consistent with that obtained by Western blot in the early pregnancy. In contrast, no obvious peak level of Hsp105 was observed in the uterus of pseudopregnant rat on day 5 or day 6. Furthermore, injection of antisense oligodeoxynucleotides to Hsp105 into the rat uterine horn on day 3 of pregnancy obviously suppressed the protein expression as expected and reduced number of the implanted embryos as compared with the control.

Conclusion: Temporal and spatial changes in Hsp105 expression in pregnant rat uterus may play a physiological role in regulating embryo implantation.

Show MeSH

Related in: MedlinePlus

Effect of antisense ODNs on number of implanted embryo. A: Three representative uteri: (a) Pregnant rat was injected with sense Hsp105 ODNs in the left horn, with antisense Hsp105 ODNs in the right horn (10 ug in100 μl DD water) on day 3 of pregnancy; (b): Pregnant rat was injected in the left horn with antisense, the right horn with sense Hsp105 ODNs (10 ug in 100 μl DD water) on day 3 of pregnancy; (c): Pregnant rat was injected in both horns with DD water (100 μl). B: Statistical analysis of implanted embryo numbers in the uteri with the various treatments. Vertical axis represents the number of implanted embryos in the unilateral uterine horn. Data are presented as mean ± SEM (n = 8). Statistical analysis was performed using one-way ANOVA followed by Post-Hoc comparisons Bar with ** is significantly different from S-ODNs and DD water treated control (P < 0.01).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2667524&req=5

Figure 7: Effect of antisense ODNs on number of implanted embryo. A: Three representative uteri: (a) Pregnant rat was injected with sense Hsp105 ODNs in the left horn, with antisense Hsp105 ODNs in the right horn (10 ug in100 μl DD water) on day 3 of pregnancy; (b): Pregnant rat was injected in the left horn with antisense, the right horn with sense Hsp105 ODNs (10 ug in 100 μl DD water) on day 3 of pregnancy; (c): Pregnant rat was injected in both horns with DD water (100 μl). B: Statistical analysis of implanted embryo numbers in the uteri with the various treatments. Vertical axis represents the number of implanted embryos in the unilateral uterine horn. Data are presented as mean ± SEM (n = 8). Statistical analysis was performed using one-way ANOVA followed by Post-Hoc comparisons Bar with ** is significantly different from S-ODNs and DD water treated control (P < 0.01).

Mentions: We further examined whether inhibition of Hsp105 expression could influence embryo implantation. After administration of either the antisense or the corresponding sense Hsp105 ODNs or distilled water into the respective unilateral uterine horns of pregnant rats on day 3, the animals were killed on day 9, and the uteri were examined for the number of implanted embryos as well as their morphological status. One representative picture of the A-ODNs- and the S-ODNs-treated uteri was shown (Fig. 7A). Ten and 9 embryos were observed in the S-ODNs-treated horns (n = 8) (a: left horn, b: right horn), while only 3 and 4 embryos (a: right horn, b: left horn) were observed in the contralateral A-ODNs-treated horns. However, all the embryos in both treated horns were normal by appearance and size. The water-injected rats contained eight to ten normal implanted embryos in each uterine horn in average (Fig. 7A(c)). No significant changes in the number of implanted embryos or the embryo normality were observed in the S-ODNs-treated horns as compared with that in the water-treated control group, indicating that the dose of ODNs used in this study was non-toxic to the embryo implantation. In contrast, as shown in Fig. 7B, a significant reduction in the number of implanted embryos in the A-ODNs-treated group was observed (60%, P < 0.01) as compared with that of the S-ODNs-treated group, but no embryo abnormality in the A-ODNs treated animals was observed.


Increased expression of heat shock protein 105 in rat uterus of early pregnancy and its significance in embryo implantation.

Yuan JX, Xiao LJ, Lu CL, Zhang XS, Liu T, Chen M, Hu ZY, Gao F, Liu YX - Reprod. Biol. Endocrinol. (2009)

Effect of antisense ODNs on number of implanted embryo. A: Three representative uteri: (a) Pregnant rat was injected with sense Hsp105 ODNs in the left horn, with antisense Hsp105 ODNs in the right horn (10 ug in100 μl DD water) on day 3 of pregnancy; (b): Pregnant rat was injected in the left horn with antisense, the right horn with sense Hsp105 ODNs (10 ug in 100 μl DD water) on day 3 of pregnancy; (c): Pregnant rat was injected in both horns with DD water (100 μl). B: Statistical analysis of implanted embryo numbers in the uteri with the various treatments. Vertical axis represents the number of implanted embryos in the unilateral uterine horn. Data are presented as mean ± SEM (n = 8). Statistical analysis was performed using one-way ANOVA followed by Post-Hoc comparisons Bar with ** is significantly different from S-ODNs and DD water treated control (P < 0.01).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2667524&req=5

Figure 7: Effect of antisense ODNs on number of implanted embryo. A: Three representative uteri: (a) Pregnant rat was injected with sense Hsp105 ODNs in the left horn, with antisense Hsp105 ODNs in the right horn (10 ug in100 μl DD water) on day 3 of pregnancy; (b): Pregnant rat was injected in the left horn with antisense, the right horn with sense Hsp105 ODNs (10 ug in 100 μl DD water) on day 3 of pregnancy; (c): Pregnant rat was injected in both horns with DD water (100 μl). B: Statistical analysis of implanted embryo numbers in the uteri with the various treatments. Vertical axis represents the number of implanted embryos in the unilateral uterine horn. Data are presented as mean ± SEM (n = 8). Statistical analysis was performed using one-way ANOVA followed by Post-Hoc comparisons Bar with ** is significantly different from S-ODNs and DD water treated control (P < 0.01).
Mentions: We further examined whether inhibition of Hsp105 expression could influence embryo implantation. After administration of either the antisense or the corresponding sense Hsp105 ODNs or distilled water into the respective unilateral uterine horns of pregnant rats on day 3, the animals were killed on day 9, and the uteri were examined for the number of implanted embryos as well as their morphological status. One representative picture of the A-ODNs- and the S-ODNs-treated uteri was shown (Fig. 7A). Ten and 9 embryos were observed in the S-ODNs-treated horns (n = 8) (a: left horn, b: right horn), while only 3 and 4 embryos (a: right horn, b: left horn) were observed in the contralateral A-ODNs-treated horns. However, all the embryos in both treated horns were normal by appearance and size. The water-injected rats contained eight to ten normal implanted embryos in each uterine horn in average (Fig. 7A(c)). No significant changes in the number of implanted embryos or the embryo normality were observed in the S-ODNs-treated horns as compared with that in the water-treated control group, indicating that the dose of ODNs used in this study was non-toxic to the embryo implantation. In contrast, as shown in Fig. 7B, a significant reduction in the number of implanted embryos in the A-ODNs-treated group was observed (60%, P < 0.01) as compared with that of the S-ODNs-treated group, but no embryo abnormality in the A-ODNs treated animals was observed.

Bottom Line: Injection of antisense oligodeoxynucleotides to Hsp105 into pregnant rat uteri was carried out to look at effect of Hsp105 on embryo implantation.Furthermore, injection of antisense oligodeoxynucleotides to Hsp105 into the rat uterine horn on day 3 of pregnancy obviously suppressed the protein expression as expected and reduced number of the implanted embryos as compared with the control.Temporal and spatial changes in Hsp105 expression in pregnant rat uterus may play a physiological role in regulating embryo implantation.

View Article: PubMed Central - HTML - PubMed

Affiliation: State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China. yuanjx@ioz.ac.cn

ABSTRACT

Background: Heat shock proteins (Hsps) are a set of highly conserved proteins, Hsp105, has been suggested to play a role in reproduction.

Methods: Spatio-temporal expression of Hsp105 in rat uterus during peri-implantation period was examined by immunohistochemistry and Western blot, pseudopregnant uterus was used as control. Injection of antisense oligodeoxynucleotides to Hsp105 into pregnant rat uteri was carried out to look at effect of Hsp105 on embryo implantation.

Results: Expression of Hsp105 was mainly in the luminal epithelium on day 1 of pregnancy, and reached a peak level on day 5, whereas in stroma cells, adjacent to the implanting embryo, the strongest expression of Hsp105 was observed on day 6. The immunostaining profile in the uterus was consistent with that obtained by Western blot in the early pregnancy. In contrast, no obvious peak level of Hsp105 was observed in the uterus of pseudopregnant rat on day 5 or day 6. Furthermore, injection of antisense oligodeoxynucleotides to Hsp105 into the rat uterine horn on day 3 of pregnancy obviously suppressed the protein expression as expected and reduced number of the implanted embryos as compared with the control.

Conclusion: Temporal and spatial changes in Hsp105 expression in pregnant rat uterus may play a physiological role in regulating embryo implantation.

Show MeSH
Related in: MedlinePlus