Limits...
A proteomic approach for studying insect phylogeny: CAPA peptides of ancient insect taxa (Dictyoptera, Blattoptera) as a test case.

Roth S, Fromm B, Gäde G, Predel R - BMC Evol. Biol. (2009)

Bottom Line: Neuropeptide ligands have to fit exactly into their respective receptors and thus the evolution of the coding regions of their genes is constrained and may be strongly conserved.When sequence data sets from other neuropeptides, viz. adipokinetic hormones and sulfakinins, were included, the general topology of the cladogram did not change but bootstrap values increased considerably.This study represents the first comprehensive survey of neuropeptides of insects for solely phylogenetic purposes and concludes that sequences of short neuropeptides are suitable to complement molecular biological and morphological data for the reconstruction of phylogenetic relationships.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Zoology, University of Jena, Erbertstrasse, Germany. steffen.roth@macnews.de

ABSTRACT

Background: Neuropeptide ligands have to fit exactly into their respective receptors and thus the evolution of the coding regions of their genes is constrained and may be strongly conserved. As such, they may be suitable for the reconstruction of phylogenetic relationships within higher taxa. CAPA peptides of major lineages of cockroaches (Blaberidae, Blattellidae, Blattidae, Polyphagidae, Cryptocercidae) and of the termite Mastotermes darwiniensis were chosen to test the above hypothesis. The phylogenetic relationships within various groups of the taxon Dictyoptera (praying mantids, termites and cockroaches) are still highly disputed.

Results: Tandem mass spectrometry of neuropeptides from perisympathetic organs was used to obtain sequence data of CAPA peptides from single specimens; the data were analysed by Maximum Parsimony and Bayesian Interference. The resulting cladograms, taking 61 species into account, show a topology which is in general agreement with recent molecular and morphological phylogenetic analyses, including the recent phylogenetic arrangement placing termites within the cockroaches. When sequence data sets from other neuropeptides, viz. adipokinetic hormones and sulfakinins, were included, the general topology of the cladogram did not change but bootstrap values increased considerably.

Conclusion: This study represents the first comprehensive survey of neuropeptides of insects for solely phylogenetic purposes and concludes that sequences of short neuropeptides are suitable to complement molecular biological and morphological data for the reconstruction of phylogenetic relationships.

Show MeSH

Related in: MedlinePlus

Phylogenetic relationships of cockroaches based on CAPA peptide sequences represented by a maximum parsimony (MP) 50% majority rules consensus tree. Numbers on the branches indicate bootstrap values (≥ 50) for MP. Italic numbers on the nodes indicate posterior probability values (≥ 0.5) (proportion of the 18205 sampled trees that contain the node). Tree length = 142, Consistency index (CI) = 0.768, Homoplasy Index (HI) = 0.232, Retention index (RI) = 0.907, Rescaled consistency index (RC) = 0.696.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2667406&req=5

Figure 3: Phylogenetic relationships of cockroaches based on CAPA peptide sequences represented by a maximum parsimony (MP) 50% majority rules consensus tree. Numbers on the branches indicate bootstrap values (≥ 50) for MP. Italic numbers on the nodes indicate posterior probability values (≥ 0.5) (proportion of the 18205 sampled trees that contain the node). Tree length = 142, Consistency index (CI) = 0.768, Homoplasy Index (HI) = 0.232, Retention index (RI) = 0.907, Rescaled consistency index (RC) = 0.696.

Mentions: Due to the high level of conservation in the sequences of PVK-2 as well as in the C-termini of the other CAPA peptides, only 33 amino acid positions contained phylogenetically informative characters. It was intriguing to see that the Maximum Parsimony (MP) analysis (Figure 3) obtained from these data was generally in agreement with recent molecular [44] and morphological [47] analyses, although the bootstrap values were relatively low. Significant support (bootstrapping, posterior probabilities of Bayesian analysis) was found for the monophyly of Blaberoidea (Blattellidae + Blaberidae) and Blattidae. The cladograms also support sister-group relationships between Blaberoidea and Blattoidea, Blattellidae and Blaberidae, and Blattidae and Polyphagidae + Cryptocercidae + Mastotermes. Within the latter clade, the three polyphagid species (Polyphaga aegyptiaca, Ergaula capucina, Therea petiveriana) appear as a monophyletic group separated from an unsolved sister-group containing Cryptocercus kyebangensis and Mastotermes darwiniensis. A Bayesian consensus tree (see additional file 1): Phylogenetic relationships based on neuropeptide sequences represented by a Bayesian majority rules consensus tree) yielded almost identical topologies with those that were obtained from Maximum Parsimony.


A proteomic approach for studying insect phylogeny: CAPA peptides of ancient insect taxa (Dictyoptera, Blattoptera) as a test case.

Roth S, Fromm B, Gäde G, Predel R - BMC Evol. Biol. (2009)

Phylogenetic relationships of cockroaches based on CAPA peptide sequences represented by a maximum parsimony (MP) 50% majority rules consensus tree. Numbers on the branches indicate bootstrap values (≥ 50) for MP. Italic numbers on the nodes indicate posterior probability values (≥ 0.5) (proportion of the 18205 sampled trees that contain the node). Tree length = 142, Consistency index (CI) = 0.768, Homoplasy Index (HI) = 0.232, Retention index (RI) = 0.907, Rescaled consistency index (RC) = 0.696.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2667406&req=5

Figure 3: Phylogenetic relationships of cockroaches based on CAPA peptide sequences represented by a maximum parsimony (MP) 50% majority rules consensus tree. Numbers on the branches indicate bootstrap values (≥ 50) for MP. Italic numbers on the nodes indicate posterior probability values (≥ 0.5) (proportion of the 18205 sampled trees that contain the node). Tree length = 142, Consistency index (CI) = 0.768, Homoplasy Index (HI) = 0.232, Retention index (RI) = 0.907, Rescaled consistency index (RC) = 0.696.
Mentions: Due to the high level of conservation in the sequences of PVK-2 as well as in the C-termini of the other CAPA peptides, only 33 amino acid positions contained phylogenetically informative characters. It was intriguing to see that the Maximum Parsimony (MP) analysis (Figure 3) obtained from these data was generally in agreement with recent molecular [44] and morphological [47] analyses, although the bootstrap values were relatively low. Significant support (bootstrapping, posterior probabilities of Bayesian analysis) was found for the monophyly of Blaberoidea (Blattellidae + Blaberidae) and Blattidae. The cladograms also support sister-group relationships between Blaberoidea and Blattoidea, Blattellidae and Blaberidae, and Blattidae and Polyphagidae + Cryptocercidae + Mastotermes. Within the latter clade, the three polyphagid species (Polyphaga aegyptiaca, Ergaula capucina, Therea petiveriana) appear as a monophyletic group separated from an unsolved sister-group containing Cryptocercus kyebangensis and Mastotermes darwiniensis. A Bayesian consensus tree (see additional file 1): Phylogenetic relationships based on neuropeptide sequences represented by a Bayesian majority rules consensus tree) yielded almost identical topologies with those that were obtained from Maximum Parsimony.

Bottom Line: Neuropeptide ligands have to fit exactly into their respective receptors and thus the evolution of the coding regions of their genes is constrained and may be strongly conserved.When sequence data sets from other neuropeptides, viz. adipokinetic hormones and sulfakinins, were included, the general topology of the cladogram did not change but bootstrap values increased considerably.This study represents the first comprehensive survey of neuropeptides of insects for solely phylogenetic purposes and concludes that sequences of short neuropeptides are suitable to complement molecular biological and morphological data for the reconstruction of phylogenetic relationships.

View Article: PubMed Central - HTML - PubMed

Affiliation: Institute of Zoology, University of Jena, Erbertstrasse, Germany. steffen.roth@macnews.de

ABSTRACT

Background: Neuropeptide ligands have to fit exactly into their respective receptors and thus the evolution of the coding regions of their genes is constrained and may be strongly conserved. As such, they may be suitable for the reconstruction of phylogenetic relationships within higher taxa. CAPA peptides of major lineages of cockroaches (Blaberidae, Blattellidae, Blattidae, Polyphagidae, Cryptocercidae) and of the termite Mastotermes darwiniensis were chosen to test the above hypothesis. The phylogenetic relationships within various groups of the taxon Dictyoptera (praying mantids, termites and cockroaches) are still highly disputed.

Results: Tandem mass spectrometry of neuropeptides from perisympathetic organs was used to obtain sequence data of CAPA peptides from single specimens; the data were analysed by Maximum Parsimony and Bayesian Interference. The resulting cladograms, taking 61 species into account, show a topology which is in general agreement with recent molecular and morphological phylogenetic analyses, including the recent phylogenetic arrangement placing termites within the cockroaches. When sequence data sets from other neuropeptides, viz. adipokinetic hormones and sulfakinins, were included, the general topology of the cladogram did not change but bootstrap values increased considerably.

Conclusion: This study represents the first comprehensive survey of neuropeptides of insects for solely phylogenetic purposes and concludes that sequences of short neuropeptides are suitable to complement molecular biological and morphological data for the reconstruction of phylogenetic relationships.

Show MeSH
Related in: MedlinePlus