Limits...
Accurate real-time PCR strategy for monitoring bloodstream parasitic loads in chagas disease patients.

Duffy T, Bisio M, Altcheh J, Burgos JM, Diez M, Levin MJ, Favaloro RR, Freilij H, Schijman AG - PLoS Negl Trop Dis (2009)

Bottom Line: The Q-PCR has a detection limit of 0.1 and 0.01 parasites/mL, with a dynamic range of 10(6) and 10(7) for Silvio X10 cl1 (T. cruzi I) and Cl Brener stocks (T. cruzi IIe), respectively, an efficiency of 99%, and a coefficient of determination (R(2)) of 0.998.In order to express accurately the parasitic loads: (1) we adapted a commercial kit based on silica-membrane technology to enable efficient processing of Guanidine Hydrochloride-EDTA treated blood samples and minimize PCR inhibition; (2) results were normalized incorporating a linearized plasmid as an internal standard of the whole procedure; and (3) a correction factor according to the representativity of satellite sequences in each parasite lineage group was determined using a modified real-time PCR protocol (Lg-PCR).All together, the high analytical sensitivity of the Q-PCR strategy, the low levels of intra- and inter-assay variations, as well as the accuracy provided by the Lg-PCR based correction factor support this methodology as a key laboratory tool for monitoring clinical reactivation and etiological treatment outcome in Chagas disease patients.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina.

ABSTRACT

Background: This report describes a real-time PCR (Q-PCR) strategy to quantify Trypanosoma cruzi (T. cruzi) DNA in peripheral blood samples from Chagas disease patients targeted to conserved motifs within the repetitive satellite sequence.

Methodology/principal findings: The Q-PCR has a detection limit of 0.1 and 0.01 parasites/mL, with a dynamic range of 10(6) and 10(7) for Silvio X10 cl1 (T. cruzi I) and Cl Brener stocks (T. cruzi IIe), respectively, an efficiency of 99%, and a coefficient of determination (R(2)) of 0.998. In order to express accurately the parasitic loads: (1) we adapted a commercial kit based on silica-membrane technology to enable efficient processing of Guanidine Hydrochloride-EDTA treated blood samples and minimize PCR inhibition; (2) results were normalized incorporating a linearized plasmid as an internal standard of the whole procedure; and (3) a correction factor according to the representativity of satellite sequences in each parasite lineage group was determined using a modified real-time PCR protocol (Lg-PCR). The Q-PCR strategy was applied (1) to estimate basal parasite loads in 43 pediatric Chagas disease patients, (2) to follow-up 38 of them receiving treatment with benznidazole, and (3) to monitor three chronic Chagas heart disease patients who underwent heart-transplantation and displayed events of clinical reactivation due to immunosupression.

Conclusion/significance: All together, the high analytical sensitivity of the Q-PCR strategy, the low levels of intra- and inter-assay variations, as well as the accuracy provided by the Lg-PCR based correction factor support this methodology as a key laboratory tool for monitoring clinical reactivation and etiological treatment outcome in Chagas disease patients.

Show MeSH

Related in: MedlinePlus

Dynamic range of the T. cruzi satellite DNA based Q-PCR.Results are expressed as the number of parasites per milliliter of blood and represent the average of 5 independent experiments. Slope = −3.35. Efficiency = 99%. Dynamic range: 0.01–105 p/mL. R square: 0.998. C(t): cycle threshold.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2667272&req=5

pntd-0000419-g001: Dynamic range of the T. cruzi satellite DNA based Q-PCR.Results are expressed as the number of parasites per milliliter of blood and represent the average of 5 independent experiments. Slope = −3.35. Efficiency = 99%. Dynamic range: 0.01–105 p/mL. R square: 0.998. C(t): cycle threshold.

Mentions: The analytical sensitivity of the Q-PCR was tested by using serial dilutions of purified T. cruzi DNAs from TcI (Silvio X10 cl1) and TcIIe (Cl Brener) reference stocks. The detection limits were 2 fg and 0.2 fg DNA per reaction tube with a dynamic range of 107 and 108 for Silvio X10 cl1 and Cl Brener stocks, respectively (data not shown). These detection limits correspond to 0.01 and 0.001 parasite genomic equivalents considering that one parasite cell harbors approximately 200 fg of DNA. Furthermore, we tested the operational parameters of Q-PCR in reconstituted - blood samples spiked with known quantities of Cl Brener and Silvio X10 cl1 cultured epimastigote cells. The dynamic range of Q-PCR performed with samples reconstituted with Silvio X-10 was 0.1–105 p/mL and with those spiked with Cl Brener was 0.01–105 p/mL (Figure 1).


Accurate real-time PCR strategy for monitoring bloodstream parasitic loads in chagas disease patients.

Duffy T, Bisio M, Altcheh J, Burgos JM, Diez M, Levin MJ, Favaloro RR, Freilij H, Schijman AG - PLoS Negl Trop Dis (2009)

Dynamic range of the T. cruzi satellite DNA based Q-PCR.Results are expressed as the number of parasites per milliliter of blood and represent the average of 5 independent experiments. Slope = −3.35. Efficiency = 99%. Dynamic range: 0.01–105 p/mL. R square: 0.998. C(t): cycle threshold.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2667272&req=5

pntd-0000419-g001: Dynamic range of the T. cruzi satellite DNA based Q-PCR.Results are expressed as the number of parasites per milliliter of blood and represent the average of 5 independent experiments. Slope = −3.35. Efficiency = 99%. Dynamic range: 0.01–105 p/mL. R square: 0.998. C(t): cycle threshold.
Mentions: The analytical sensitivity of the Q-PCR was tested by using serial dilutions of purified T. cruzi DNAs from TcI (Silvio X10 cl1) and TcIIe (Cl Brener) reference stocks. The detection limits were 2 fg and 0.2 fg DNA per reaction tube with a dynamic range of 107 and 108 for Silvio X10 cl1 and Cl Brener stocks, respectively (data not shown). These detection limits correspond to 0.01 and 0.001 parasite genomic equivalents considering that one parasite cell harbors approximately 200 fg of DNA. Furthermore, we tested the operational parameters of Q-PCR in reconstituted - blood samples spiked with known quantities of Cl Brener and Silvio X10 cl1 cultured epimastigote cells. The dynamic range of Q-PCR performed with samples reconstituted with Silvio X-10 was 0.1–105 p/mL and with those spiked with Cl Brener was 0.01–105 p/mL (Figure 1).

Bottom Line: The Q-PCR has a detection limit of 0.1 and 0.01 parasites/mL, with a dynamic range of 10(6) and 10(7) for Silvio X10 cl1 (T. cruzi I) and Cl Brener stocks (T. cruzi IIe), respectively, an efficiency of 99%, and a coefficient of determination (R(2)) of 0.998.In order to express accurately the parasitic loads: (1) we adapted a commercial kit based on silica-membrane technology to enable efficient processing of Guanidine Hydrochloride-EDTA treated blood samples and minimize PCR inhibition; (2) results were normalized incorporating a linearized plasmid as an internal standard of the whole procedure; and (3) a correction factor according to the representativity of satellite sequences in each parasite lineage group was determined using a modified real-time PCR protocol (Lg-PCR).All together, the high analytical sensitivity of the Q-PCR strategy, the low levels of intra- and inter-assay variations, as well as the accuracy provided by the Lg-PCR based correction factor support this methodology as a key laboratory tool for monitoring clinical reactivation and etiological treatment outcome in Chagas disease patients.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina.

ABSTRACT

Background: This report describes a real-time PCR (Q-PCR) strategy to quantify Trypanosoma cruzi (T. cruzi) DNA in peripheral blood samples from Chagas disease patients targeted to conserved motifs within the repetitive satellite sequence.

Methodology/principal findings: The Q-PCR has a detection limit of 0.1 and 0.01 parasites/mL, with a dynamic range of 10(6) and 10(7) for Silvio X10 cl1 (T. cruzi I) and Cl Brener stocks (T. cruzi IIe), respectively, an efficiency of 99%, and a coefficient of determination (R(2)) of 0.998. In order to express accurately the parasitic loads: (1) we adapted a commercial kit based on silica-membrane technology to enable efficient processing of Guanidine Hydrochloride-EDTA treated blood samples and minimize PCR inhibition; (2) results were normalized incorporating a linearized plasmid as an internal standard of the whole procedure; and (3) a correction factor according to the representativity of satellite sequences in each parasite lineage group was determined using a modified real-time PCR protocol (Lg-PCR). The Q-PCR strategy was applied (1) to estimate basal parasite loads in 43 pediatric Chagas disease patients, (2) to follow-up 38 of them receiving treatment with benznidazole, and (3) to monitor three chronic Chagas heart disease patients who underwent heart-transplantation and displayed events of clinical reactivation due to immunosupression.

Conclusion/significance: All together, the high analytical sensitivity of the Q-PCR strategy, the low levels of intra- and inter-assay variations, as well as the accuracy provided by the Lg-PCR based correction factor support this methodology as a key laboratory tool for monitoring clinical reactivation and etiological treatment outcome in Chagas disease patients.

Show MeSH
Related in: MedlinePlus