Limits...
Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases.

Zcharia E, Jia J, Zhang X, Baraz L, Lindahl U, Peretz T, Vlodavsky I, Li JP - PLoS ONE (2009)

Bottom Line: Heparanase, a mammalian endo-beta-D-glucuronidase, specifically degrades heparan sulfate proteoglycans ubiquitously associated with the cell surface and extracellular matrix.Co-regulation of heparanase and MMPs was also noted by a marked decrease in MMP (primarily MMP-2,-9 and 14) expression following transfection and over-expression of the heparanase gene in cultured human mammary carcinoma (MDA-MB-231) cells.It is conceivable that MMP-2 and MMP-14, which exert some of the effects elicited by heparanase (i.e., over branching of mammary glands, enhanced angiogenic response) can compensate for its absence, in spite of their different enzymatic substrate.

View Article: PubMed Central - PubMed

Affiliation: Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

ABSTRACT

Background: Heparanase, a mammalian endo-beta-D-glucuronidase, specifically degrades heparan sulfate proteoglycans ubiquitously associated with the cell surface and extracellular matrix. This single gene encoded enzyme is over-expressed in most human cancers, promoting tumor metastasis and angiogenesis.

Principal findings: We report that targeted disruption of the murine heparanase gene eliminated heparanase enzymatic activity, resulting in accumulation of long heparan sulfate chains. Unexpectedly, the heparanase knockout (Hpse-KO) mice were fertile, exhibited a normal life span and did not show prominent pathological alterations. The lack of major abnormalities is attributed to a marked elevation in the expression of matrix metalloproteinases, for example, MMP2 and MMP14 in the Hpse-KO liver and kidney. Co-regulation of heparanase and MMPs was also noted by a marked decrease in MMP (primarily MMP-2,-9 and 14) expression following transfection and over-expression of the heparanase gene in cultured human mammary carcinoma (MDA-MB-231) cells. Immunostaining (kidney tissue) and chromatin immunoprecipitation (ChIP) analysis (Hpse-KO mouse embryonic fibroblasts) suggest that the newly discovered co-regulation of heparanase and MMPs is mediated by stabilization and transcriptional activity of beta-catenin.

Conclusions/significance: The lack of heparanase expression and activity was accompanied by alterations in the expression level of MMP family members, primarily MMP-2 and MMP-14. It is conceivable that MMP-2 and MMP-14, which exert some of the effects elicited by heparanase (i.e., over branching of mammary glands, enhanced angiogenic response) can compensate for its absence, in spite of their different enzymatic substrate. Generation of viable Hpse-KO mice lacking significant abnormalities may provide a promising indication for the use of heparanase as a target for drug development.

Show MeSH

Related in: MedlinePlus

Molecular structure of HS from wt vs. Hpse-KO mice. Total metabolically 35S-labeled HSPGs was isolated as described in “Materials and Methods”. The samples were analyzed on a Superose 12 column as shown for liver (A) and kidney (C). The HSPGs were treated with alkali and the released free HS chains were analyzed on the same column as show for liver (B) and kidney (D). (Blue- wt; red- Hpse-KO). Standard heparin is eluted at a volume of 14 ml.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2664924&req=5

pone-0005181-g002: Molecular structure of HS from wt vs. Hpse-KO mice. Total metabolically 35S-labeled HSPGs was isolated as described in “Materials and Methods”. The samples were analyzed on a Superose 12 column as shown for liver (A) and kidney (C). The HSPGs were treated with alkali and the released free HS chains were analyzed on the same column as show for liver (B) and kidney (D). (Blue- wt; red- Hpse-KO). Standard heparin is eluted at a volume of 14 ml.

Mentions: As degradation of HS is the major function of heparanase, we first examined the size of HS derived from selected organs. For this purpose, adult mice were metabolically labeled with Na235SO4 and total HS was isolated and subjected to gel filtration chromatography. As demonstrated in figure 2, HS chains from Hpse-KO liver (Fig. 2A, B) and kidney (Fig. 2C, D) were of higher molecular mass in comparison to HS extracted from wt tissues (Fig. 2). In addition, the elution peaks of free HS chains isolated from Hpse-KO tissues appeared narrower and more symmetrical (Fig. 2B,D), indicating less heterogeneity in size distribution in comparison with the elution profile of HS side chains isolated from wt tissues (the overall broad size of peaks reflects the state of HS biosynthesis). Structural analysis of HS sulfation and disaccharide composition did not show a detectable difference between samples derived from wt and Hpse-KO tissues (not shown).


Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases.

Zcharia E, Jia J, Zhang X, Baraz L, Lindahl U, Peretz T, Vlodavsky I, Li JP - PLoS ONE (2009)

Molecular structure of HS from wt vs. Hpse-KO mice. Total metabolically 35S-labeled HSPGs was isolated as described in “Materials and Methods”. The samples were analyzed on a Superose 12 column as shown for liver (A) and kidney (C). The HSPGs were treated with alkali and the released free HS chains were analyzed on the same column as show for liver (B) and kidney (D). (Blue- wt; red- Hpse-KO). Standard heparin is eluted at a volume of 14 ml.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2664924&req=5

pone-0005181-g002: Molecular structure of HS from wt vs. Hpse-KO mice. Total metabolically 35S-labeled HSPGs was isolated as described in “Materials and Methods”. The samples were analyzed on a Superose 12 column as shown for liver (A) and kidney (C). The HSPGs were treated with alkali and the released free HS chains were analyzed on the same column as show for liver (B) and kidney (D). (Blue- wt; red- Hpse-KO). Standard heparin is eluted at a volume of 14 ml.
Mentions: As degradation of HS is the major function of heparanase, we first examined the size of HS derived from selected organs. For this purpose, adult mice were metabolically labeled with Na235SO4 and total HS was isolated and subjected to gel filtration chromatography. As demonstrated in figure 2, HS chains from Hpse-KO liver (Fig. 2A, B) and kidney (Fig. 2C, D) were of higher molecular mass in comparison to HS extracted from wt tissues (Fig. 2). In addition, the elution peaks of free HS chains isolated from Hpse-KO tissues appeared narrower and more symmetrical (Fig. 2B,D), indicating less heterogeneity in size distribution in comparison with the elution profile of HS side chains isolated from wt tissues (the overall broad size of peaks reflects the state of HS biosynthesis). Structural analysis of HS sulfation and disaccharide composition did not show a detectable difference between samples derived from wt and Hpse-KO tissues (not shown).

Bottom Line: Heparanase, a mammalian endo-beta-D-glucuronidase, specifically degrades heparan sulfate proteoglycans ubiquitously associated with the cell surface and extracellular matrix.Co-regulation of heparanase and MMPs was also noted by a marked decrease in MMP (primarily MMP-2,-9 and 14) expression following transfection and over-expression of the heparanase gene in cultured human mammary carcinoma (MDA-MB-231) cells.It is conceivable that MMP-2 and MMP-14, which exert some of the effects elicited by heparanase (i.e., over branching of mammary glands, enhanced angiogenic response) can compensate for its absence, in spite of their different enzymatic substrate.

View Article: PubMed Central - PubMed

Affiliation: Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

ABSTRACT

Background: Heparanase, a mammalian endo-beta-D-glucuronidase, specifically degrades heparan sulfate proteoglycans ubiquitously associated with the cell surface and extracellular matrix. This single gene encoded enzyme is over-expressed in most human cancers, promoting tumor metastasis and angiogenesis.

Principal findings: We report that targeted disruption of the murine heparanase gene eliminated heparanase enzymatic activity, resulting in accumulation of long heparan sulfate chains. Unexpectedly, the heparanase knockout (Hpse-KO) mice were fertile, exhibited a normal life span and did not show prominent pathological alterations. The lack of major abnormalities is attributed to a marked elevation in the expression of matrix metalloproteinases, for example, MMP2 and MMP14 in the Hpse-KO liver and kidney. Co-regulation of heparanase and MMPs was also noted by a marked decrease in MMP (primarily MMP-2,-9 and 14) expression following transfection and over-expression of the heparanase gene in cultured human mammary carcinoma (MDA-MB-231) cells. Immunostaining (kidney tissue) and chromatin immunoprecipitation (ChIP) analysis (Hpse-KO mouse embryonic fibroblasts) suggest that the newly discovered co-regulation of heparanase and MMPs is mediated by stabilization and transcriptional activity of beta-catenin.

Conclusions/significance: The lack of heparanase expression and activity was accompanied by alterations in the expression level of MMP family members, primarily MMP-2 and MMP-14. It is conceivable that MMP-2 and MMP-14, which exert some of the effects elicited by heparanase (i.e., over branching of mammary glands, enhanced angiogenic response) can compensate for its absence, in spite of their different enzymatic substrate. Generation of viable Hpse-KO mice lacking significant abnormalities may provide a promising indication for the use of heparanase as a target for drug development.

Show MeSH
Related in: MedlinePlus