Limits...
Mechanotherapy: how physical therapists' prescription of exercise promotes tissue repair.

Khan KM, Scott A - Br J Sports Med (2009)

Bottom Line: Mechanotransduction is the physiological process where cells sense and respond to mechanical loads.Strictly speaking, mechanotransduction maintains normal musculoskeletal structures in the absence of injury.After first outlining the process of mechanotransduction, we provide well-known clinical therapeutic examples of mechanotherapy-turning movement into tissue healing.

View Article: PubMed Central - PubMed

Affiliation: Centre for Hip Health and Mobility and Department of Family Practice, University of British Columbia, Vancouver, Canada. karim.khan@ubc.ca

ABSTRACT
Mechanotransduction is the physiological process where cells sense and respond to mechanical loads. This paper reclaims the term "mechanotherapy" and presents the current scientific knowledge underpinning how load may be used therapeutically to stimulate tissue repair and remodelling in tendon, muscle, cartilage and bone. The purpose of this short article is to answer a frequently asked question "How precisely does exercise promote tissue healing?" This is a fundamental question for clinicians who prescribe exercise for tendinopathies, muscle tears, non-inflammatory arthropathies and even controlled loading after fractures. High-quality randomised controlled trials and systematic reviews show that various forms of exercise or movement prescription benefit patients with a wide range of musculoskeletal problems.1(-)4 But what happens at the tissue level to promote repair and remodelling of tendon, muscle, articular cartilage and bone? The one-word answer is "mechanotransduction", but rather than finishing there and limiting this paper to 95 words, we provide a short illustrated introduction to this remarkable, ubiquitous, non-neural, physiological process. We also re-introduce the term "mechanotherapy" to distinguish therapeutics (exercise prescription specifically to treat injuries) from the homeostatic role of mechanotransduction. Strictly speaking, mechanotransduction maintains normal musculoskeletal structures in the absence of injury. After first outlining the process of mechanotransduction, we provide well-known clinical therapeutic examples of mechanotherapy-turning movement into tissue healing.

Show MeSH

Related in: MedlinePlus

Tendon tissue provides an example of cell–cell communication. (A) The intact tendon consists of extracellular matrix (including collagen) and specialised tendon cells (arrowheads). (B) Tendon with collagen removed to reveal the interconnecting cell network. Cells are physically in contact throughout the tendon, facilitating cell–cell communication. Gap junctions are the specialised regions where cells connect and communicate small charged particles. They can be identified by their specific protein connexin 43. (C–E) Time course of cell–cell communication from (C) beginning, through (D) the midpoint to (E) the end. The signalling proteins for this step include calcium (red spheres) and inositol triphosphate (IP3).
© Copyright Policy - openaccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2662433&req=5

B2W-43-04-0247-f02: Tendon tissue provides an example of cell–cell communication. (A) The intact tendon consists of extracellular matrix (including collagen) and specialised tendon cells (arrowheads). (B) Tendon with collagen removed to reveal the interconnecting cell network. Cells are physically in contact throughout the tendon, facilitating cell–cell communication. Gap junctions are the specialised regions where cells connect and communicate small charged particles. They can be identified by their specific protein connexin 43. (C–E) Time course of cell–cell communication from (C) beginning, through (D) the midpoint to (E) the end. The signalling proteins for this step include calcium (red spheres) and inositol triphosphate (IP3).

Mentions: The previous paragraph illustrated mechanocoupling by focusing on a single cell, but let us draw back to examine a larger tissue area that contains thousands of cells embedded within an extracellular matrix (fig 2). The signalling proteins for this step include calcium and inositol triphosphate. The process of cell–cell communication is best understood by illustration (fig 2) and animation (supplementary slides online). The critical point is that stimulus in one location (location “1” in fig 2C) leads to a distant cell registering a new signal (location “2” in fig 2E) even though the distant cell does not receive a mechanical stimulus.7


Mechanotherapy: how physical therapists' prescription of exercise promotes tissue repair.

Khan KM, Scott A - Br J Sports Med (2009)

Tendon tissue provides an example of cell–cell communication. (A) The intact tendon consists of extracellular matrix (including collagen) and specialised tendon cells (arrowheads). (B) Tendon with collagen removed to reveal the interconnecting cell network. Cells are physically in contact throughout the tendon, facilitating cell–cell communication. Gap junctions are the specialised regions where cells connect and communicate small charged particles. They can be identified by their specific protein connexin 43. (C–E) Time course of cell–cell communication from (C) beginning, through (D) the midpoint to (E) the end. The signalling proteins for this step include calcium (red spheres) and inositol triphosphate (IP3).
© Copyright Policy - openaccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2662433&req=5

B2W-43-04-0247-f02: Tendon tissue provides an example of cell–cell communication. (A) The intact tendon consists of extracellular matrix (including collagen) and specialised tendon cells (arrowheads). (B) Tendon with collagen removed to reveal the interconnecting cell network. Cells are physically in contact throughout the tendon, facilitating cell–cell communication. Gap junctions are the specialised regions where cells connect and communicate small charged particles. They can be identified by their specific protein connexin 43. (C–E) Time course of cell–cell communication from (C) beginning, through (D) the midpoint to (E) the end. The signalling proteins for this step include calcium (red spheres) and inositol triphosphate (IP3).
Mentions: The previous paragraph illustrated mechanocoupling by focusing on a single cell, but let us draw back to examine a larger tissue area that contains thousands of cells embedded within an extracellular matrix (fig 2). The signalling proteins for this step include calcium and inositol triphosphate. The process of cell–cell communication is best understood by illustration (fig 2) and animation (supplementary slides online). The critical point is that stimulus in one location (location “1” in fig 2C) leads to a distant cell registering a new signal (location “2” in fig 2E) even though the distant cell does not receive a mechanical stimulus.7

Bottom Line: Mechanotransduction is the physiological process where cells sense and respond to mechanical loads.Strictly speaking, mechanotransduction maintains normal musculoskeletal structures in the absence of injury.After first outlining the process of mechanotransduction, we provide well-known clinical therapeutic examples of mechanotherapy-turning movement into tissue healing.

View Article: PubMed Central - PubMed

Affiliation: Centre for Hip Health and Mobility and Department of Family Practice, University of British Columbia, Vancouver, Canada. karim.khan@ubc.ca

ABSTRACT
Mechanotransduction is the physiological process where cells sense and respond to mechanical loads. This paper reclaims the term "mechanotherapy" and presents the current scientific knowledge underpinning how load may be used therapeutically to stimulate tissue repair and remodelling in tendon, muscle, cartilage and bone. The purpose of this short article is to answer a frequently asked question "How precisely does exercise promote tissue healing?" This is a fundamental question for clinicians who prescribe exercise for tendinopathies, muscle tears, non-inflammatory arthropathies and even controlled loading after fractures. High-quality randomised controlled trials and systematic reviews show that various forms of exercise or movement prescription benefit patients with a wide range of musculoskeletal problems.1(-)4 But what happens at the tissue level to promote repair and remodelling of tendon, muscle, articular cartilage and bone? The one-word answer is "mechanotransduction", but rather than finishing there and limiting this paper to 95 words, we provide a short illustrated introduction to this remarkable, ubiquitous, non-neural, physiological process. We also re-introduce the term "mechanotherapy" to distinguish therapeutics (exercise prescription specifically to treat injuries) from the homeostatic role of mechanotransduction. Strictly speaking, mechanotransduction maintains normal musculoskeletal structures in the absence of injury. After first outlining the process of mechanotransduction, we provide well-known clinical therapeutic examples of mechanotherapy-turning movement into tissue healing.

Show MeSH
Related in: MedlinePlus