Limits...
Discovery and characterization of novel vascular and hematopoietic genes downstream of etsrp in zebrafish.

Gomez GA, Veldman MB, Zhao Y, Burgess S, Lin S - PLoS ONE (2009)

Bottom Line: Subsequent in vivo expression studies resulted in the identification of fourteen genes with blood and/or vascular expression, six of these being completely novel.Additional functional analysis of two newly discovered genes, hapln1b and sh3gl3, demonstrates their importance in embryonic vascular development.The results described here identify a group of genes downstream of etsrp likely to be critical for vascular and/or myeloid development.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America.

ABSTRACT
The transcription factor Etsrp is required for vasculogenesis and primitive myelopoiesis in zebrafish. When ectopically expressed, etsrp is sufficient to induce the expression of many vascular and myeloid genes in zebrafish. The mammalian homolog of etsrp, ER71/Etv2, is also essential for vascular and hematopoietic development. To identify genes downstream of etsrp, gain-of-function experiments were performed for etsrp in zebrafish embryos followed by transcription profile analysis by microarray. Subsequent in vivo expression studies resulted in the identification of fourteen genes with blood and/or vascular expression, six of these being completely novel. Regulation of these genes by etsrp was confirmed by ectopic induction in etsrp overexpressing embryos and decreased expression in etsrp deficient embryos. Additional functional analysis of two newly discovered genes, hapln1b and sh3gl3, demonstrates their importance in embryonic vascular development. The results described here identify a group of genes downstream of etsrp likely to be critical for vascular and/or myeloid development.

Show MeSH

Related in: MedlinePlus

Expression of genes identified in primitive myeloid blood cells.Gene expression was examined at 24–28 hours post fertilization by whole mount in situ hybridization in wildtype embryos. (A) krml2 is expressed in primitive myeloid cells (dispersed cells labeled throughout yolk and head) in the posterior cardinal vein, caudal hematopoietic tail region, and somites. (B) Lrrp33 is expressed in primitive myeloid cells and in the caudal hematopoietic tissue Abbreviations: pm, primitive myeloid; pcv, posterior cardinal vein; cht, caudal hematopoietic tail region; ss, somites. Scale bar: 250 µm.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2654924&req=5

pone-0004994-g003: Expression of genes identified in primitive myeloid blood cells.Gene expression was examined at 24–28 hours post fertilization by whole mount in situ hybridization in wildtype embryos. (A) krml2 is expressed in primitive myeloid cells (dispersed cells labeled throughout yolk and head) in the posterior cardinal vein, caudal hematopoietic tail region, and somites. (B) Lrrp33 is expressed in primitive myeloid cells and in the caudal hematopoietic tissue Abbreviations: pm, primitive myeloid; pcv, posterior cardinal vein; cht, caudal hematopoietic tail region; ss, somites. Scale bar: 250 µm.

Mentions: To screen the 31 selected genes for blood and/or vascular expression, their expression patterns were examined in wild type embryos by WISH at 24–30 hours post fertilization (hpf). Of the genes examined, two are expressed in blood lineages (Figure 3), and twelve in vasculature (Figure 4), while sixteen other genes demonstrate tissue specificity but are irrelevant to blood or vessels (Figure S2).


Discovery and characterization of novel vascular and hematopoietic genes downstream of etsrp in zebrafish.

Gomez GA, Veldman MB, Zhao Y, Burgess S, Lin S - PLoS ONE (2009)

Expression of genes identified in primitive myeloid blood cells.Gene expression was examined at 24–28 hours post fertilization by whole mount in situ hybridization in wildtype embryos. (A) krml2 is expressed in primitive myeloid cells (dispersed cells labeled throughout yolk and head) in the posterior cardinal vein, caudal hematopoietic tail region, and somites. (B) Lrrp33 is expressed in primitive myeloid cells and in the caudal hematopoietic tissue Abbreviations: pm, primitive myeloid; pcv, posterior cardinal vein; cht, caudal hematopoietic tail region; ss, somites. Scale bar: 250 µm.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2654924&req=5

pone-0004994-g003: Expression of genes identified in primitive myeloid blood cells.Gene expression was examined at 24–28 hours post fertilization by whole mount in situ hybridization in wildtype embryos. (A) krml2 is expressed in primitive myeloid cells (dispersed cells labeled throughout yolk and head) in the posterior cardinal vein, caudal hematopoietic tail region, and somites. (B) Lrrp33 is expressed in primitive myeloid cells and in the caudal hematopoietic tissue Abbreviations: pm, primitive myeloid; pcv, posterior cardinal vein; cht, caudal hematopoietic tail region; ss, somites. Scale bar: 250 µm.
Mentions: To screen the 31 selected genes for blood and/or vascular expression, their expression patterns were examined in wild type embryos by WISH at 24–30 hours post fertilization (hpf). Of the genes examined, two are expressed in blood lineages (Figure 3), and twelve in vasculature (Figure 4), while sixteen other genes demonstrate tissue specificity but are irrelevant to blood or vessels (Figure S2).

Bottom Line: Subsequent in vivo expression studies resulted in the identification of fourteen genes with blood and/or vascular expression, six of these being completely novel.Additional functional analysis of two newly discovered genes, hapln1b and sh3gl3, demonstrates their importance in embryonic vascular development.The results described here identify a group of genes downstream of etsrp likely to be critical for vascular and/or myeloid development.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America.

ABSTRACT
The transcription factor Etsrp is required for vasculogenesis and primitive myelopoiesis in zebrafish. When ectopically expressed, etsrp is sufficient to induce the expression of many vascular and myeloid genes in zebrafish. The mammalian homolog of etsrp, ER71/Etv2, is also essential for vascular and hematopoietic development. To identify genes downstream of etsrp, gain-of-function experiments were performed for etsrp in zebrafish embryos followed by transcription profile analysis by microarray. Subsequent in vivo expression studies resulted in the identification of fourteen genes with blood and/or vascular expression, six of these being completely novel. Regulation of these genes by etsrp was confirmed by ectopic induction in etsrp overexpressing embryos and decreased expression in etsrp deficient embryos. Additional functional analysis of two newly discovered genes, hapln1b and sh3gl3, demonstrates their importance in embryonic vascular development. The results described here identify a group of genes downstream of etsrp likely to be critical for vascular and/or myeloid development.

Show MeSH
Related in: MedlinePlus