Limits...
Cycle inhibiting factors (CIFs) are a growing family of functional cyclomodulins present in invertebrate and mammal bacterial pathogens.

Jubelin G, Chavez CV, Taieb F, Banfield MJ, Samba-Louaka A, Nobe R, Nougayrède JP, Zumbihl R, Givaudan A, Escoubas JM, Oswald E - PLoS ONE (2009)

Bottom Line: The cycle inhibiting factor (Cif) produced by enteropathogenic and enterohemorrhagic Escherichia coli was the first cyclomodulin to be identified that is injected into host cells via the type III secretion machinery.The X-ray crystal structure of Cif revealed it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases that share a conserved catalytic triad.Cif homologs from the enterobacteria Yersinia pseudotuberculosis, Photorhabdus luminescens, Photorhabdus asymbiotica and the beta-proteobacterium Burkholderia pseudomallei all induce cytopathic effects identical to those observed with Cif from pathogenic E. coli.

View Article: PubMed Central - PubMed

Affiliation: INRA, UMR1225, Toulouse, France.

ABSTRACT
The cycle inhibiting factor (Cif) produced by enteropathogenic and enterohemorrhagic Escherichia coli was the first cyclomodulin to be identified that is injected into host cells via the type III secretion machinery. Cif provokes cytopathic effects characterized by G(1) and G(2) cell cycle arrests, accumulation of the cyclin-dependent kinase inhibitors (CKIs) p21(waf1/cip1) and p27(kip1) and formation of actin stress fibres. The X-ray crystal structure of Cif revealed it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases that share a conserved catalytic triad. Here we report the discovery and characterization of four Cif homologs encoded by different pathogenic or symbiotic bacteria isolated from vertebrates or invertebrates. Cif homologs from the enterobacteria Yersinia pseudotuberculosis, Photorhabdus luminescens, Photorhabdus asymbiotica and the beta-proteobacterium Burkholderia pseudomallei all induce cytopathic effects identical to those observed with Cif from pathogenic E. coli. Although these Cif homologs are remarkably divergent in primary sequence, the catalytic triad is strictly conserved and was shown to be crucial for cell cycle arrest, cytoskeleton reorganization and CKIs accumulation. These results reveal that Cif proteins form a growing family of cyclomodulins in bacteria that interact with very distinct hosts including insects, nematodes and humans.

Show MeSH

Related in: MedlinePlus

Phylogenetic relationship between CifEc, CifYp, CifBp, CifPl and CifPa.A multiple alignment of the protein sequences (see Fig. 3A) was used to obtain the unrooted tree with Phylip's DrawTree software.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2654923&req=5

pone-0004855-g001: Phylogenetic relationship between CifEc, CifYp, CifBp, CifPl and CifPa.A multiple alignment of the protein sequences (see Fig. 3A) was used to obtain the unrooted tree with Phylip's DrawTree software.

Mentions: The degree of conservation and the phylogenetic relationship between Cif homologs were analysed by constructing a multiple sequence alignment and a phylogenetic tree using the Neighbour-Joining method (Fig. 1). CifPl and CifPa clustered together and were separated from a second group consisting of CifEc and CifYp. CifBp was the most divergent protein, located to a branch between the two groups. This phylogenetic tree matches the accepted bacterial taxonomy since B. pseudomallei belongs to the β-proteobacteria class whereas all others are enterobacteriacae belonging to the γ-proteobacteria class.


Cycle inhibiting factors (CIFs) are a growing family of functional cyclomodulins present in invertebrate and mammal bacterial pathogens.

Jubelin G, Chavez CV, Taieb F, Banfield MJ, Samba-Louaka A, Nobe R, Nougayrède JP, Zumbihl R, Givaudan A, Escoubas JM, Oswald E - PLoS ONE (2009)

Phylogenetic relationship between CifEc, CifYp, CifBp, CifPl and CifPa.A multiple alignment of the protein sequences (see Fig. 3A) was used to obtain the unrooted tree with Phylip's DrawTree software.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2654923&req=5

pone-0004855-g001: Phylogenetic relationship between CifEc, CifYp, CifBp, CifPl and CifPa.A multiple alignment of the protein sequences (see Fig. 3A) was used to obtain the unrooted tree with Phylip's DrawTree software.
Mentions: The degree of conservation and the phylogenetic relationship between Cif homologs were analysed by constructing a multiple sequence alignment and a phylogenetic tree using the Neighbour-Joining method (Fig. 1). CifPl and CifPa clustered together and were separated from a second group consisting of CifEc and CifYp. CifBp was the most divergent protein, located to a branch between the two groups. This phylogenetic tree matches the accepted bacterial taxonomy since B. pseudomallei belongs to the β-proteobacteria class whereas all others are enterobacteriacae belonging to the γ-proteobacteria class.

Bottom Line: The cycle inhibiting factor (Cif) produced by enteropathogenic and enterohemorrhagic Escherichia coli was the first cyclomodulin to be identified that is injected into host cells via the type III secretion machinery.The X-ray crystal structure of Cif revealed it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases that share a conserved catalytic triad.Cif homologs from the enterobacteria Yersinia pseudotuberculosis, Photorhabdus luminescens, Photorhabdus asymbiotica and the beta-proteobacterium Burkholderia pseudomallei all induce cytopathic effects identical to those observed with Cif from pathogenic E. coli.

View Article: PubMed Central - PubMed

Affiliation: INRA, UMR1225, Toulouse, France.

ABSTRACT
The cycle inhibiting factor (Cif) produced by enteropathogenic and enterohemorrhagic Escherichia coli was the first cyclomodulin to be identified that is injected into host cells via the type III secretion machinery. Cif provokes cytopathic effects characterized by G(1) and G(2) cell cycle arrests, accumulation of the cyclin-dependent kinase inhibitors (CKIs) p21(waf1/cip1) and p27(kip1) and formation of actin stress fibres. The X-ray crystal structure of Cif revealed it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases that share a conserved catalytic triad. Here we report the discovery and characterization of four Cif homologs encoded by different pathogenic or symbiotic bacteria isolated from vertebrates or invertebrates. Cif homologs from the enterobacteria Yersinia pseudotuberculosis, Photorhabdus luminescens, Photorhabdus asymbiotica and the beta-proteobacterium Burkholderia pseudomallei all induce cytopathic effects identical to those observed with Cif from pathogenic E. coli. Although these Cif homologs are remarkably divergent in primary sequence, the catalytic triad is strictly conserved and was shown to be crucial for cell cycle arrest, cytoskeleton reorganization and CKIs accumulation. These results reveal that Cif proteins form a growing family of cyclomodulins in bacteria that interact with very distinct hosts including insects, nematodes and humans.

Show MeSH
Related in: MedlinePlus