Limits...
Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches.

Cooper WJ, Westneat MW - BMC Evol. Biol. (2009)

Bottom Line: Both analyses showed that the evolution of planktivory has involved important changes in pomacentrid functional morphology, and that the mechanics of upper jaw kinesis have been of great importance to the evolution of damselfish feeding.Our data support a tight and biomechanically defined link between structure and the functional ecology of fish skulls, and indicate that certain mechanisms for transmitting motion through their jaw linkages may require particular anatomical configurations, a conclusion that contravenes the concept of "many-to-one mapping" for fish jaw mechanics.Damselfish trophic evolution is characterized by rapid and repeated shifts between a small number of eco-morphological states, an evolutionary pattern that we describe as reticulate adaptive radiation.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL 60637, USA. wjcooper@syr.edu

ABSTRACT

Background: Damselfishes (Perciformes, Pomacentridae) are a major component of coral reef communities, and the functional diversity of their trophic anatomy is an important constituent of the ecological morphology of these systems. Using shape analyses, biomechanical modelling, and phylogenetically based comparative methods, we examined the anatomy of damselfish feeding among all genera and trophic groups. Coordinate based shape analyses of anatomical landmarks were used to describe patterns of morphological diversity and determine positions of functional groups in a skull morphospace. These landmarks define the lever and linkage structures of the damselfish feeding system, and biomechanical analyses of this data were performed using the software program JawsModel4 in order to calculate the simple mechanical advantage (MA) employed by different skull elements during feeding, and to compute kinematic transmission coefficients (KT) that describe the efficiency with which angular motion is transferred through the complex linkages of damselfish skulls.

Results: Our results indicate that pomacentrid planktivores are significantly different from other damselfishes, that biting MA values and protrusion KT ratios are correlated with pomacentrid trophic groups more tightly than KT scores associated with maxillary rotation and gape angle, and that the MAs employed by their three biting muscles have evolved independently. Most of the biomechanical parameters examined have experienced low levels of phylogenetic constraint, which suggests that they have evolved quickly.

Conclusion: Joint morphological and biomechanical analyses of the same anatomical data provided two reciprocally illuminating arrays of information. Both analyses showed that the evolution of planktivory has involved important changes in pomacentrid functional morphology, and that the mechanics of upper jaw kinesis have been of great importance to the evolution of damselfish feeding. Our data support a tight and biomechanically defined link between structure and the functional ecology of fish skulls, and indicate that certain mechanisms for transmitting motion through their jaw linkages may require particular anatomical configurations, a conclusion that contravenes the concept of "many-to-one mapping" for fish jaw mechanics. Damselfish trophic evolution is characterized by rapid and repeated shifts between a small number of eco-morphological states, an evolutionary pattern that we describe as reticulate adaptive radiation.

Show MeSH

Related in: MedlinePlus

Anatomical landmarks and biomechanical linkages of functional importance for damselfish feeding. A. Landmarks used in morphological and biomechanical analyses: 1 = Tip of the anterior-most tooth on the premaxilla; 2 = Tip of the anterior-most tooth on the dentary; 3 = Maxillary-palatine joint (upper rotation point of the maxilla); 4 = Insertion of the A1 division of the adductor mandibulae on the maxilla; 5 = Maxillary-articular joint (lower point of rotation of the maxilla); 6 = Insertion of the A2 division of the adductor mandibulae on the articular process; 7 = Insertion of the A3 division of the adductor mandibulae on the anterior, medial surface of the articular; 8 = Posterior tip of the ascending process of the premaxilla; 9 = Joint between the nasal bone and the neurocranium; 10 = The most anterio-ventral point of the eye socket; 11 = Articular-quadrate joint (lower jaw joint); 12 = Insertion of the interopercular ligament on the articular (point at which moth opening forces are applied); 13 = Most posterio-ventral point of the eye socket; 14 = Dorsal-most tip of the supraoccipital crest on the neurocranium; 15 = Most dorsal point on the origin of the A3 division of the adductor mandibulae on the preopercular; 16 = Most dorsal point on the origin of the A1 division of the adductor mandibulae on the preopercular; 17 = Most dorsal point on the origin of the A2 division of the adductor mandibulae on the preopercular; 18 = Posterio-ventral corner of the preopercular; 19 = Corner of the mouth. B. Levers and linkages in damselfish skulls, with schematics of the three divisions of the adductor mandibulae.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2654721&req=5

Figure 1: Anatomical landmarks and biomechanical linkages of functional importance for damselfish feeding. A. Landmarks used in morphological and biomechanical analyses: 1 = Tip of the anterior-most tooth on the premaxilla; 2 = Tip of the anterior-most tooth on the dentary; 3 = Maxillary-palatine joint (upper rotation point of the maxilla); 4 = Insertion of the A1 division of the adductor mandibulae on the maxilla; 5 = Maxillary-articular joint (lower point of rotation of the maxilla); 6 = Insertion of the A2 division of the adductor mandibulae on the articular process; 7 = Insertion of the A3 division of the adductor mandibulae on the anterior, medial surface of the articular; 8 = Posterior tip of the ascending process of the premaxilla; 9 = Joint between the nasal bone and the neurocranium; 10 = The most anterio-ventral point of the eye socket; 11 = Articular-quadrate joint (lower jaw joint); 12 = Insertion of the interopercular ligament on the articular (point at which moth opening forces are applied); 13 = Most posterio-ventral point of the eye socket; 14 = Dorsal-most tip of the supraoccipital crest on the neurocranium; 15 = Most dorsal point on the origin of the A3 division of the adductor mandibulae on the preopercular; 16 = Most dorsal point on the origin of the A1 division of the adductor mandibulae on the preopercular; 17 = Most dorsal point on the origin of the A2 division of the adductor mandibulae on the preopercular; 18 = Posterio-ventral corner of the preopercular; 19 = Corner of the mouth. B. Levers and linkages in damselfish skulls, with schematics of the three divisions of the adductor mandibulae.

Mentions: Dissections were performed on the right side of fish heads in order to expose morphological landmarks of functional importance for fish feeding (Figure 1). Except in the case of Altrichthys curatus, where only juveniles were available, all specimens were adults. Dissected heads were photographed in lateral view from a position directly perpendicular to the plane described by the landmarks on the side of each fish's head. Since identical positioning of moveable elements is necessary when performing geometric morphometric analyses, all fishes were photographed with their mouths closed and their operculae and hyoid arches adducted. A scale bar was included in each photograph. Most specimens were photographed using a Leica digital camera interfaced with a dissecting microscope. Larger species were photographed using a Nikon coolpix 4300 digital camera. Nineteen morphological landmarks (LM; Figure 1) were plotted on each image using the software program tpsDig [25], which was also used to determine the Cartesian coordinates of each landmark and to establish the scale of all images.


Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches.

Cooper WJ, Westneat MW - BMC Evol. Biol. (2009)

Anatomical landmarks and biomechanical linkages of functional importance for damselfish feeding. A. Landmarks used in morphological and biomechanical analyses: 1 = Tip of the anterior-most tooth on the premaxilla; 2 = Tip of the anterior-most tooth on the dentary; 3 = Maxillary-palatine joint (upper rotation point of the maxilla); 4 = Insertion of the A1 division of the adductor mandibulae on the maxilla; 5 = Maxillary-articular joint (lower point of rotation of the maxilla); 6 = Insertion of the A2 division of the adductor mandibulae on the articular process; 7 = Insertion of the A3 division of the adductor mandibulae on the anterior, medial surface of the articular; 8 = Posterior tip of the ascending process of the premaxilla; 9 = Joint between the nasal bone and the neurocranium; 10 = The most anterio-ventral point of the eye socket; 11 = Articular-quadrate joint (lower jaw joint); 12 = Insertion of the interopercular ligament on the articular (point at which moth opening forces are applied); 13 = Most posterio-ventral point of the eye socket; 14 = Dorsal-most tip of the supraoccipital crest on the neurocranium; 15 = Most dorsal point on the origin of the A3 division of the adductor mandibulae on the preopercular; 16 = Most dorsal point on the origin of the A1 division of the adductor mandibulae on the preopercular; 17 = Most dorsal point on the origin of the A2 division of the adductor mandibulae on the preopercular; 18 = Posterio-ventral corner of the preopercular; 19 = Corner of the mouth. B. Levers and linkages in damselfish skulls, with schematics of the three divisions of the adductor mandibulae.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2654721&req=5

Figure 1: Anatomical landmarks and biomechanical linkages of functional importance for damselfish feeding. A. Landmarks used in morphological and biomechanical analyses: 1 = Tip of the anterior-most tooth on the premaxilla; 2 = Tip of the anterior-most tooth on the dentary; 3 = Maxillary-palatine joint (upper rotation point of the maxilla); 4 = Insertion of the A1 division of the adductor mandibulae on the maxilla; 5 = Maxillary-articular joint (lower point of rotation of the maxilla); 6 = Insertion of the A2 division of the adductor mandibulae on the articular process; 7 = Insertion of the A3 division of the adductor mandibulae on the anterior, medial surface of the articular; 8 = Posterior tip of the ascending process of the premaxilla; 9 = Joint between the nasal bone and the neurocranium; 10 = The most anterio-ventral point of the eye socket; 11 = Articular-quadrate joint (lower jaw joint); 12 = Insertion of the interopercular ligament on the articular (point at which moth opening forces are applied); 13 = Most posterio-ventral point of the eye socket; 14 = Dorsal-most tip of the supraoccipital crest on the neurocranium; 15 = Most dorsal point on the origin of the A3 division of the adductor mandibulae on the preopercular; 16 = Most dorsal point on the origin of the A1 division of the adductor mandibulae on the preopercular; 17 = Most dorsal point on the origin of the A2 division of the adductor mandibulae on the preopercular; 18 = Posterio-ventral corner of the preopercular; 19 = Corner of the mouth. B. Levers and linkages in damselfish skulls, with schematics of the three divisions of the adductor mandibulae.
Mentions: Dissections were performed on the right side of fish heads in order to expose morphological landmarks of functional importance for fish feeding (Figure 1). Except in the case of Altrichthys curatus, where only juveniles were available, all specimens were adults. Dissected heads were photographed in lateral view from a position directly perpendicular to the plane described by the landmarks on the side of each fish's head. Since identical positioning of moveable elements is necessary when performing geometric morphometric analyses, all fishes were photographed with their mouths closed and their operculae and hyoid arches adducted. A scale bar was included in each photograph. Most specimens were photographed using a Leica digital camera interfaced with a dissecting microscope. Larger species were photographed using a Nikon coolpix 4300 digital camera. Nineteen morphological landmarks (LM; Figure 1) were plotted on each image using the software program tpsDig [25], which was also used to determine the Cartesian coordinates of each landmark and to establish the scale of all images.

Bottom Line: Both analyses showed that the evolution of planktivory has involved important changes in pomacentrid functional morphology, and that the mechanics of upper jaw kinesis have been of great importance to the evolution of damselfish feeding.Our data support a tight and biomechanically defined link between structure and the functional ecology of fish skulls, and indicate that certain mechanisms for transmitting motion through their jaw linkages may require particular anatomical configurations, a conclusion that contravenes the concept of "many-to-one mapping" for fish jaw mechanics.Damselfish trophic evolution is characterized by rapid and repeated shifts between a small number of eco-morphological states, an evolutionary pattern that we describe as reticulate adaptive radiation.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL 60637, USA. wjcooper@syr.edu

ABSTRACT

Background: Damselfishes (Perciformes, Pomacentridae) are a major component of coral reef communities, and the functional diversity of their trophic anatomy is an important constituent of the ecological morphology of these systems. Using shape analyses, biomechanical modelling, and phylogenetically based comparative methods, we examined the anatomy of damselfish feeding among all genera and trophic groups. Coordinate based shape analyses of anatomical landmarks were used to describe patterns of morphological diversity and determine positions of functional groups in a skull morphospace. These landmarks define the lever and linkage structures of the damselfish feeding system, and biomechanical analyses of this data were performed using the software program JawsModel4 in order to calculate the simple mechanical advantage (MA) employed by different skull elements during feeding, and to compute kinematic transmission coefficients (KT) that describe the efficiency with which angular motion is transferred through the complex linkages of damselfish skulls.

Results: Our results indicate that pomacentrid planktivores are significantly different from other damselfishes, that biting MA values and protrusion KT ratios are correlated with pomacentrid trophic groups more tightly than KT scores associated with maxillary rotation and gape angle, and that the MAs employed by their three biting muscles have evolved independently. Most of the biomechanical parameters examined have experienced low levels of phylogenetic constraint, which suggests that they have evolved quickly.

Conclusion: Joint morphological and biomechanical analyses of the same anatomical data provided two reciprocally illuminating arrays of information. Both analyses showed that the evolution of planktivory has involved important changes in pomacentrid functional morphology, and that the mechanics of upper jaw kinesis have been of great importance to the evolution of damselfish feeding. Our data support a tight and biomechanically defined link between structure and the functional ecology of fish skulls, and indicate that certain mechanisms for transmitting motion through their jaw linkages may require particular anatomical configurations, a conclusion that contravenes the concept of "many-to-one mapping" for fish jaw mechanics. Damselfish trophic evolution is characterized by rapid and repeated shifts between a small number of eco-morphological states, an evolutionary pattern that we describe as reticulate adaptive radiation.

Show MeSH
Related in: MedlinePlus