Limits...
Recent progress in toxicogenomics research in South Korea.

Chung TH, Yoo JH, Ryu JC, Kim YS - BMC Proc (2009)

Bottom Line: However, since the scale of the Korean pharmaceutical industry, which was expected to play the key role in toxicogenomics was small compared to that of advanced countries, industry-sponsored large-scale research projects and supporting infrastructures have been lacking in Korea.It is gaining ground by government and related industries as well, the research is diversified to embrace environmental genomics, and local research groups are making strategic links to international research groups such as the MicroArray Quality Control (MAQC) consortium.We expect the advancement of the Korean toxicogenomics research program will be beneficial not only to the local society alone, but also to international scientists as a whole.

View Article: PubMed Central - HTML - PubMed

Affiliation: Korea Biobank, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 194 Tongil-lo, Eunpyung-gu, Seoul, 122-701, Republic of Korea. hoontaechung@gmail.com

ABSTRACT

Background: The importance of toxicogenomics was recognized early in Korea and a group of researchers was trying to build up a research infrastructure and educational system. However, since the scale of the Korean pharmaceutical industry, which was expected to play the key role in toxicogenomics was small compared to that of advanced countries, industry-sponsored large-scale research projects and supporting infrastructures have been lacking in Korea.

Results: To improve this situation, the Korean government has exerted special efforts to promote toxicogenomics research and development the last few years as an initiative to stimulate a premature drug development industry on par with global competition and launched several large scale research projects recently. Researchers are also trying to keep pace with government efforts by organizing local scientist groups, training young toxicogenomics scientists, and widening the toxicogenomic research efforts to environmental toxicity as well. Research and development from bioinformatics and genomics venture companies are also contributing to uplifting the competitiveness of the toxicogenomics industry.

Conclusion: Toxicogenomics in Korea is making steady progress in many directions. It is gaining ground by government and related industries as well, the research is diversified to embrace environmental genomics, and local research groups are making strategic links to international research groups such as the MicroArray Quality Control (MAQC) consortium. We expect the advancement of the Korean toxicogenomics research program will be beneficial not only to the local society alone, but also to international scientists as a whole.

No MeSH data available.


Related in: MedlinePlus

Architecture of KOTIS whole system
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2654489&req=5

Figure 1: Architecture of KOTIS whole system

Mentions: The National Institute of Toxicological Research (NITR) [4] is a leading government research agency in the field of toxicogenomics in Korea. With a long-term mission to develop toxicogenomics-based toxicity and safety assessment techniques, NITR is conducting various research and development projects. Among them is the construction of s toxicoinformatics infrastructure called KOTIS, an acronym of Korea Toxicoinformatics Integrated System, which is carried out jointly with ISTECH Inc.[5]. KOTIS which is modeled against ArrayTrack [6] and CEBS [7] is composed of a database system and its analysis programs. It will archive all government-funded toxicogenomics research results in Korea and disseminate them back to interested researchers (Figure 1). In particular, not only does it stores and redistributes the basic experimental data but it also allows users to download selected data needed for meta-analysis after re-processing archived expression data on top of quality assessment results. It will be able to deal with most of the expression platforms currently used by toxicogenomics researchers. Analysis programs are designed to seamlessly work with the KOTIS database under the client/server environment. The actual implementation focuses not only on conventional techniques for expression data analysis such as quality assessment, significant gene finding, clustering and classification, but also on meta-analysis – a recent hot research issue in toxicogenomics. For meta-analysis, we will allow more choices to users by implementing parametric and non-parametric statistical techniques as well as the simple "gene list agreement" method. This will allow users to flexibly select an analysis method that is appropriate for the characteristics of the data (Figure 2). KOTIS is expected to level up the toxicogenomics research and development in Korea tremendously. Besides the construction of toxicoinformatic infrastructure, NITR is also conducting various transcriptomics projects to accumulate data on toxicity-induced expression changes in response to chemicals in model organisms by collaborating with academic researchers. NITR has already accumulated expression profiles against ~100 toxic materials through 22 independent projects in the year 2007. In addition, NITR is also making great efforts to establish international research cooperations with global research organizations like the National Center for Toxicological Research (NCTR).


Recent progress in toxicogenomics research in South Korea.

Chung TH, Yoo JH, Ryu JC, Kim YS - BMC Proc (2009)

Architecture of KOTIS whole system
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2654489&req=5

Figure 1: Architecture of KOTIS whole system
Mentions: The National Institute of Toxicological Research (NITR) [4] is a leading government research agency in the field of toxicogenomics in Korea. With a long-term mission to develop toxicogenomics-based toxicity and safety assessment techniques, NITR is conducting various research and development projects. Among them is the construction of s toxicoinformatics infrastructure called KOTIS, an acronym of Korea Toxicoinformatics Integrated System, which is carried out jointly with ISTECH Inc.[5]. KOTIS which is modeled against ArrayTrack [6] and CEBS [7] is composed of a database system and its analysis programs. It will archive all government-funded toxicogenomics research results in Korea and disseminate them back to interested researchers (Figure 1). In particular, not only does it stores and redistributes the basic experimental data but it also allows users to download selected data needed for meta-analysis after re-processing archived expression data on top of quality assessment results. It will be able to deal with most of the expression platforms currently used by toxicogenomics researchers. Analysis programs are designed to seamlessly work with the KOTIS database under the client/server environment. The actual implementation focuses not only on conventional techniques for expression data analysis such as quality assessment, significant gene finding, clustering and classification, but also on meta-analysis – a recent hot research issue in toxicogenomics. For meta-analysis, we will allow more choices to users by implementing parametric and non-parametric statistical techniques as well as the simple "gene list agreement" method. This will allow users to flexibly select an analysis method that is appropriate for the characteristics of the data (Figure 2). KOTIS is expected to level up the toxicogenomics research and development in Korea tremendously. Besides the construction of toxicoinformatic infrastructure, NITR is also conducting various transcriptomics projects to accumulate data on toxicity-induced expression changes in response to chemicals in model organisms by collaborating with academic researchers. NITR has already accumulated expression profiles against ~100 toxic materials through 22 independent projects in the year 2007. In addition, NITR is also making great efforts to establish international research cooperations with global research organizations like the National Center for Toxicological Research (NCTR).

Bottom Line: However, since the scale of the Korean pharmaceutical industry, which was expected to play the key role in toxicogenomics was small compared to that of advanced countries, industry-sponsored large-scale research projects and supporting infrastructures have been lacking in Korea.It is gaining ground by government and related industries as well, the research is diversified to embrace environmental genomics, and local research groups are making strategic links to international research groups such as the MicroArray Quality Control (MAQC) consortium.We expect the advancement of the Korean toxicogenomics research program will be beneficial not only to the local society alone, but also to international scientists as a whole.

View Article: PubMed Central - HTML - PubMed

Affiliation: Korea Biobank, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 194 Tongil-lo, Eunpyung-gu, Seoul, 122-701, Republic of Korea. hoontaechung@gmail.com

ABSTRACT

Background: The importance of toxicogenomics was recognized early in Korea and a group of researchers was trying to build up a research infrastructure and educational system. However, since the scale of the Korean pharmaceutical industry, which was expected to play the key role in toxicogenomics was small compared to that of advanced countries, industry-sponsored large-scale research projects and supporting infrastructures have been lacking in Korea.

Results: To improve this situation, the Korean government has exerted special efforts to promote toxicogenomics research and development the last few years as an initiative to stimulate a premature drug development industry on par with global competition and launched several large scale research projects recently. Researchers are also trying to keep pace with government efforts by organizing local scientist groups, training young toxicogenomics scientists, and widening the toxicogenomic research efforts to environmental toxicity as well. Research and development from bioinformatics and genomics venture companies are also contributing to uplifting the competitiveness of the toxicogenomics industry.

Conclusion: Toxicogenomics in Korea is making steady progress in many directions. It is gaining ground by government and related industries as well, the research is diversified to embrace environmental genomics, and local research groups are making strategic links to international research groups such as the MicroArray Quality Control (MAQC) consortium. We expect the advancement of the Korean toxicogenomics research program will be beneficial not only to the local society alone, but also to international scientists as a whole.

No MeSH data available.


Related in: MedlinePlus