Limits...
Increased DJ-1 expression under oxidative stress and in Alzheimer's disease brains.

Baulac S, Lu H, Strahle J, Yang T, Goldberg MS, Shen J, Schlossmacher MG, Lemere CA, Lu Q, Xia W - Mol Neurodegener (2009)

Bottom Line: We found that DJ-1 was expressed early during zebrafish development and throughout adulthood.While a slight reduction in staining for islet-1 positive neurons was observed in both DJ-1 KD and H2O2 treated embryos, the number of apoptotic cells was significantly increased in both KD and H2O2 treated embryos.Therefore, our results strongly suggest that DJ-1 expression is not necessary during zebrafish development but can be induced in zebrafish exposed to oxidative stress and is present in human AD brains.

View Article: PubMed Central - HTML - PubMed

Affiliation: Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA. wxia@rics.bwh.harvard.edu.

ABSTRACT
Mutations in the DJ-1 gene have been linked to autosomal recessive familial Parkinson's disease. To understand the function of DJ-1, we determined the DJ-1 expression in both zebrafish and post mortem human brains. We found that DJ-1 was expressed early during zebrafish development and throughout adulthood. Knock down (KD) of DJ-1 by injection of morpholino did not cause dramatic morphologic alterations during development, and no loss of dopaminergic neurons was observed in embryos lacking DJ-1. However, DJ-1 KD embryos were more susceptible to programmed cell death. While a slight reduction in staining for islet-1 positive neurons was observed in both DJ-1 KD and H2O2 treated embryos, the number of apoptotic cells was significantly increased in both KD and H2O2 treated embryos. Interestingly, DJ-1 expression was increased in brains of zebrafish under conditions of oxidative stress, indicating that DJ-1 is a part of stress-responsive machinery. Since oxidative stress is one of the major contributors to the development of Alzheimer's disease (AD), we also examined DJ-1 expression in AD brains. Using DJ-1 specific antibodies, we failed to detect a robust staining of DJ-1 in brain tissues from control subjects. However, DJ-1 immunoreactivity was detected in hippocampal pyramidal neurons and astrocytes of AD brains. Therefore, our results strongly suggest that DJ-1 expression is not necessary during zebrafish development but can be induced in zebrafish exposed to oxidative stress and is present in human AD brains.

No MeSH data available.


Related in: MedlinePlus

DJ-1 is detected in neurons from briefly fixed post mortem AD brains. A. Affinity purified antibody DJ-1-N detected neurons in brain section from AD cases. Staining was observed in pyramidal neurons of CA1, CA2 and CA3 subregions. B. Absence of staining in AD brain with anti-DJ-1-N preabsorbed with DJ-1 peptide, compared to an adjacent section immunostained with anti-DJ-N (A). C. DJ-1 immunoreactivity in a briefly fixed (~2 hours) section was easily detected. D. DJ-1-N failed to stain a routinely fixed (~2–4 weeks) section from the same AD case. E-G, Co-Staining of DJ-1 and GFAP in astrocytes of human brain sections. A routinely fixed section from control brain was stained with antibody DJ-1-N (E) and GFAP (F). Double immunofluorescent overlay indicates the location of DJ-1 in astrocytes (G). Magnification: A, B = 40×; C, D = 20×.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2654450&req=5

Figure 4: DJ-1 is detected in neurons from briefly fixed post mortem AD brains. A. Affinity purified antibody DJ-1-N detected neurons in brain section from AD cases. Staining was observed in pyramidal neurons of CA1, CA2 and CA3 subregions. B. Absence of staining in AD brain with anti-DJ-1-N preabsorbed with DJ-1 peptide, compared to an adjacent section immunostained with anti-DJ-N (A). C. DJ-1 immunoreactivity in a briefly fixed (~2 hours) section was easily detected. D. DJ-1-N failed to stain a routinely fixed (~2–4 weeks) section from the same AD case. E-G, Co-Staining of DJ-1 and GFAP in astrocytes of human brain sections. A routinely fixed section from control brain was stained with antibody DJ-1-N (E) and GFAP (F). Double immunofluorescent overlay indicates the location of DJ-1 in astrocytes (G). Magnification: A, B = 40×; C, D = 20×.

Mentions: Because oxidative stress is one of the major contributors to AD [38,39], we examined whether up-regulation of DJ-1 occurred in human brains undergoing a neurodegenerative process. We analyzed brain tissue from individuals with well-defined cases of AD. DJ-1 was examined in briefly fixed hippocampal sections from postmortem AD brains using our newly generated, affinity purified DJ-1-N antibody (Fig. 4A) (n = 10, age range: 77–92, Braak Stage: III-VI) [51] and non-demented control cases (n = 9, age range; 52–91). The intensity of the staining was variable among the AD cases, although it did not seem to correlate with the severity of the disease based on Braak staging [51] (data not shown). There was an absence of staining when the DJ-1-N antibody was preabsorbed with synthetic DJ-1 peptide prior to incubation on sections (Fig. 4B) and when primary antibody was omitted (data not shown). Brief fixation (< 2 hours) (Fig. 4C), as opposed to long-term fixation (2–4 weeks) (Fig. 4D) was critical for optimal neuronal DJ-1 immunostaining. We also explored DJ-1 expression in astrocytes. Double immunofluorescence labeling with anti-DJ-1-N (Fig. 4E) and anti-GFAP antibody (Fig. 4F) further confirmed the presence of DJ-1 in astrocytes (Fig. 4G).


Increased DJ-1 expression under oxidative stress and in Alzheimer's disease brains.

Baulac S, Lu H, Strahle J, Yang T, Goldberg MS, Shen J, Schlossmacher MG, Lemere CA, Lu Q, Xia W - Mol Neurodegener (2009)

DJ-1 is detected in neurons from briefly fixed post mortem AD brains. A. Affinity purified antibody DJ-1-N detected neurons in brain section from AD cases. Staining was observed in pyramidal neurons of CA1, CA2 and CA3 subregions. B. Absence of staining in AD brain with anti-DJ-1-N preabsorbed with DJ-1 peptide, compared to an adjacent section immunostained with anti-DJ-N (A). C. DJ-1 immunoreactivity in a briefly fixed (~2 hours) section was easily detected. D. DJ-1-N failed to stain a routinely fixed (~2–4 weeks) section from the same AD case. E-G, Co-Staining of DJ-1 and GFAP in astrocytes of human brain sections. A routinely fixed section from control brain was stained with antibody DJ-1-N (E) and GFAP (F). Double immunofluorescent overlay indicates the location of DJ-1 in astrocytes (G). Magnification: A, B = 40×; C, D = 20×.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2654450&req=5

Figure 4: DJ-1 is detected in neurons from briefly fixed post mortem AD brains. A. Affinity purified antibody DJ-1-N detected neurons in brain section from AD cases. Staining was observed in pyramidal neurons of CA1, CA2 and CA3 subregions. B. Absence of staining in AD brain with anti-DJ-1-N preabsorbed with DJ-1 peptide, compared to an adjacent section immunostained with anti-DJ-N (A). C. DJ-1 immunoreactivity in a briefly fixed (~2 hours) section was easily detected. D. DJ-1-N failed to stain a routinely fixed (~2–4 weeks) section from the same AD case. E-G, Co-Staining of DJ-1 and GFAP in astrocytes of human brain sections. A routinely fixed section from control brain was stained with antibody DJ-1-N (E) and GFAP (F). Double immunofluorescent overlay indicates the location of DJ-1 in astrocytes (G). Magnification: A, B = 40×; C, D = 20×.
Mentions: Because oxidative stress is one of the major contributors to AD [38,39], we examined whether up-regulation of DJ-1 occurred in human brains undergoing a neurodegenerative process. We analyzed brain tissue from individuals with well-defined cases of AD. DJ-1 was examined in briefly fixed hippocampal sections from postmortem AD brains using our newly generated, affinity purified DJ-1-N antibody (Fig. 4A) (n = 10, age range: 77–92, Braak Stage: III-VI) [51] and non-demented control cases (n = 9, age range; 52–91). The intensity of the staining was variable among the AD cases, although it did not seem to correlate with the severity of the disease based on Braak staging [51] (data not shown). There was an absence of staining when the DJ-1-N antibody was preabsorbed with synthetic DJ-1 peptide prior to incubation on sections (Fig. 4B) and when primary antibody was omitted (data not shown). Brief fixation (< 2 hours) (Fig. 4C), as opposed to long-term fixation (2–4 weeks) (Fig. 4D) was critical for optimal neuronal DJ-1 immunostaining. We also explored DJ-1 expression in astrocytes. Double immunofluorescence labeling with anti-DJ-1-N (Fig. 4E) and anti-GFAP antibody (Fig. 4F) further confirmed the presence of DJ-1 in astrocytes (Fig. 4G).

Bottom Line: We found that DJ-1 was expressed early during zebrafish development and throughout adulthood.While a slight reduction in staining for islet-1 positive neurons was observed in both DJ-1 KD and H2O2 treated embryos, the number of apoptotic cells was significantly increased in both KD and H2O2 treated embryos.Therefore, our results strongly suggest that DJ-1 expression is not necessary during zebrafish development but can be induced in zebrafish exposed to oxidative stress and is present in human AD brains.

View Article: PubMed Central - HTML - PubMed

Affiliation: Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA. wxia@rics.bwh.harvard.edu.

ABSTRACT
Mutations in the DJ-1 gene have been linked to autosomal recessive familial Parkinson's disease. To understand the function of DJ-1, we determined the DJ-1 expression in both zebrafish and post mortem human brains. We found that DJ-1 was expressed early during zebrafish development and throughout adulthood. Knock down (KD) of DJ-1 by injection of morpholino did not cause dramatic morphologic alterations during development, and no loss of dopaminergic neurons was observed in embryos lacking DJ-1. However, DJ-1 KD embryos were more susceptible to programmed cell death. While a slight reduction in staining for islet-1 positive neurons was observed in both DJ-1 KD and H2O2 treated embryos, the number of apoptotic cells was significantly increased in both KD and H2O2 treated embryos. Interestingly, DJ-1 expression was increased in brains of zebrafish under conditions of oxidative stress, indicating that DJ-1 is a part of stress-responsive machinery. Since oxidative stress is one of the major contributors to the development of Alzheimer's disease (AD), we also examined DJ-1 expression in AD brains. Using DJ-1 specific antibodies, we failed to detect a robust staining of DJ-1 in brain tissues from control subjects. However, DJ-1 immunoreactivity was detected in hippocampal pyramidal neurons and astrocytes of AD brains. Therefore, our results strongly suggest that DJ-1 expression is not necessary during zebrafish development but can be induced in zebrafish exposed to oxidative stress and is present in human AD brains.

No MeSH data available.


Related in: MedlinePlus