Limits...
Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials.

Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L, Lavigne R, Volckaert G, Mattheus W, Verween G, De Corte P, Rose T, Jennes S, Zizi M, De Vos D, Vaneechoutte M - PLoS ONE (2009)

Bottom Line: This cocktail, consisting of P. aeruginosa phages 14/1 (Myoviridae) and PNM (Podoviridae) and S. aureus phage ISP (Myoviridae) was produced and purified of endotoxin.Bacteriophage genome and proteome analysis confirmed the lytic nature of the bacteriophages, the absence of toxin-coding genes and showed that the selected phages 14/1, PNM and ISP are close relatives of respectively F8, phiKMV and phage G1.The bacteriophage cocktail is currently being evaluated in a pilot clinical study cleared by a leading Medical Ethical Committee.

View Article: PubMed Central - PubMed

Affiliation: Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia.

ABSTRACT
We describe the small-scale, laboratory-based, production and quality control of a cocktail, consisting of exclusively lytic bacteriophages, designed for the treatment of Pseudomonas aeruginosa and Staphylococcus aureus infections in burn wound patients. Based on successive selection rounds three bacteriophages were retained from an initial pool of 82 P. aeruginosa and 8 S. aureus bacteriophages, specific for prevalent P. aeruginosa and S. aureus strains in the Burn Centre of the Queen Astrid Military Hospital in Brussels, Belgium. This cocktail, consisting of P. aeruginosa phages 14/1 (Myoviridae) and PNM (Podoviridae) and S. aureus phage ISP (Myoviridae) was produced and purified of endotoxin. Quality control included Stability (shelf life), determination of pyrogenicity, sterility and cytotoxicity, confirmation of the absence of temperate bacteriophages and transmission electron microscopy-based confirmation of the presence of the expected virion morphologic particles as well as of their specific interaction with the target bacteria. Bacteriophage genome and proteome analysis confirmed the lytic nature of the bacteriophages, the absence of toxin-coding genes and showed that the selected phages 14/1, PNM and ISP are close relatives of respectively F8, phiKMV and phage G1. The bacteriophage cocktail is currently being evaluated in a pilot clinical study cleared by a leading Medical Ethical Committee.

Show MeSH

Related in: MedlinePlus

The final product, a defined bacteriophage cocktail.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2654153&req=5

pone-0004944-g002: The final product, a defined bacteriophage cocktail.

Mentions: Prior to patient application, 3 ml of BFC-1 was aspirated from a ‘single use only’ vial (Figure 2) using a sterile 5 ml syringe (B. Braun) with a sterile 20 G×2″ needle (Terumo Europe, Leuven, Belgium). The needle was replaced by a sterile spray nozzle (actuator V04.1313 BC/NR with micromist insert V06.203, Robertpack Engineering B.V., Zwolle, The Netherlands). BFC-1 was sprayed on the infected burn wound (Figure 3).


Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials.

Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L, Lavigne R, Volckaert G, Mattheus W, Verween G, De Corte P, Rose T, Jennes S, Zizi M, De Vos D, Vaneechoutte M - PLoS ONE (2009)

The final product, a defined bacteriophage cocktail.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2654153&req=5

pone-0004944-g002: The final product, a defined bacteriophage cocktail.
Mentions: Prior to patient application, 3 ml of BFC-1 was aspirated from a ‘single use only’ vial (Figure 2) using a sterile 5 ml syringe (B. Braun) with a sterile 20 G×2″ needle (Terumo Europe, Leuven, Belgium). The needle was replaced by a sterile spray nozzle (actuator V04.1313 BC/NR with micromist insert V06.203, Robertpack Engineering B.V., Zwolle, The Netherlands). BFC-1 was sprayed on the infected burn wound (Figure 3).

Bottom Line: This cocktail, consisting of P. aeruginosa phages 14/1 (Myoviridae) and PNM (Podoviridae) and S. aureus phage ISP (Myoviridae) was produced and purified of endotoxin.Bacteriophage genome and proteome analysis confirmed the lytic nature of the bacteriophages, the absence of toxin-coding genes and showed that the selected phages 14/1, PNM and ISP are close relatives of respectively F8, phiKMV and phage G1.The bacteriophage cocktail is currently being evaluated in a pilot clinical study cleared by a leading Medical Ethical Committee.

View Article: PubMed Central - PubMed

Affiliation: Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia.

ABSTRACT
We describe the small-scale, laboratory-based, production and quality control of a cocktail, consisting of exclusively lytic bacteriophages, designed for the treatment of Pseudomonas aeruginosa and Staphylococcus aureus infections in burn wound patients. Based on successive selection rounds three bacteriophages were retained from an initial pool of 82 P. aeruginosa and 8 S. aureus bacteriophages, specific for prevalent P. aeruginosa and S. aureus strains in the Burn Centre of the Queen Astrid Military Hospital in Brussels, Belgium. This cocktail, consisting of P. aeruginosa phages 14/1 (Myoviridae) and PNM (Podoviridae) and S. aureus phage ISP (Myoviridae) was produced and purified of endotoxin. Quality control included Stability (shelf life), determination of pyrogenicity, sterility and cytotoxicity, confirmation of the absence of temperate bacteriophages and transmission electron microscopy-based confirmation of the presence of the expected virion morphologic particles as well as of their specific interaction with the target bacteria. Bacteriophage genome and proteome analysis confirmed the lytic nature of the bacteriophages, the absence of toxin-coding genes and showed that the selected phages 14/1, PNM and ISP are close relatives of respectively F8, phiKMV and phage G1. The bacteriophage cocktail is currently being evaluated in a pilot clinical study cleared by a leading Medical Ethical Committee.

Show MeSH
Related in: MedlinePlus