Limits...
A new on-axis multimode spectrometer for the macromolecular crystallography beamlines of the Swiss Light Source.

Owen RL, Pearson AR, Meents A, Boehler P, Thominet V, Schulze-Briese C - J Synchrotron Radiat (2009)

Bottom Line: In situ spectroscopic methods such as UV-Vis absorption and (resonance) Raman can provide this, and can also provide a means of detecting X-ray-induced changes.Here, preliminary results are introduced from an on-axis UV-Vis absorption and Raman multimode spectrometer currently being integrated into the beamline environment at X10SA of the Swiss Light Source.The continuing development of the spectrometer is also outlined.

View Article: PubMed Central - HTML - PubMed

Affiliation: Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.

ABSTRACT
X-ray crystallography at third-generation synchrotron sources permits tremendous insight into the three-dimensional structure of macromolecules. Additional information is, however, often required to aid the transition from structure to function. In situ spectroscopic methods such as UV-Vis absorption and (resonance) Raman can provide this, and can also provide a means of detecting X-ray-induced changes. Here, preliminary results are introduced from an on-axis UV-Vis absorption and Raman multimode spectrometer currently being integrated into the beamline environment at X10SA of the Swiss Light Source. The continuing development of the spectrometer is also outlined.

Show MeSH

Related in: MedlinePlus

(a) Alignment of the focal point of the xenon lamp to the focal plane of the alignment camera using a camera mounted directly above the beamline and a pin at the sample position; the focus of the Schwarzschild objective can be clearly seen. The placement of a scintillator at the sample position allows the sample alignment camera to be used for alignment of the X-ray and optical axes: (b) X-ray shutter closed, optical shutter open; (c) both X-ray and optical shutters open with objective mis-aligned; (d) both X-ray and optical shutter open with the position of the yaw of the objective mount adjusted to maximize overlap of the X-ray and optical beams at the sample position.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2651763&req=5

fig5: (a) Alignment of the focal point of the xenon lamp to the focal plane of the alignment camera using a camera mounted directly above the beamline and a pin at the sample position; the focus of the Schwarzschild objective can be clearly seen. The placement of a scintillator at the sample position allows the sample alignment camera to be used for alignment of the X-ray and optical axes: (b) X-ray shutter closed, optical shutter open; (c) both X-ray and optical shutters open with objective mis-aligned; (d) both X-ray and optical shutter open with the position of the yaw of the objective mount adjusted to maximize overlap of the X-ray and optical beams at the sample position.

Mentions: The use of the same on-axis objective for sample alignment and spectroscopic data collection allows unambiguous alignment of the X-ray and visible optical axes. In order to achieve this, the flexor-mounted Schwarzschild objective is translated in z (see Fig. 4a ▶ for definition of axes) so that the centre of rotation of the sample is at the working distance of the objective. This can be achieved easily by use of a camera mounted above the beamline, and its view of the focusing of the xenon light by the Schwarzschild objective is shown in Fig. 5(a) ▶; the presence of the cryostream allows the visible light to be observed. Placement of a scintillator at the sample position then allows the X-ray and optical axes to be made coincident at the sample position. This is achieved by adjustment of the ‘pitch’ and ‘yaw’ of the flexor mount of the collection optics (Figs. 5b–5d ▶). The UV–Vis illumination Schwarzschild objective can be translated in x, y and z using its motorized stage and multi-axis fibre mount (Newport) which allows pitch and yaw adjustment to the fibre input. The focal spot of this objective is aligned to the centre of rotation of the sample by use of a 12.5 µm pinhole placed at the sample position through which the intensity of transmitted light at the spectrometer is maximized.


A new on-axis multimode spectrometer for the macromolecular crystallography beamlines of the Swiss Light Source.

Owen RL, Pearson AR, Meents A, Boehler P, Thominet V, Schulze-Briese C - J Synchrotron Radiat (2009)

(a) Alignment of the focal point of the xenon lamp to the focal plane of the alignment camera using a camera mounted directly above the beamline and a pin at the sample position; the focus of the Schwarzschild objective can be clearly seen. The placement of a scintillator at the sample position allows the sample alignment camera to be used for alignment of the X-ray and optical axes: (b) X-ray shutter closed, optical shutter open; (c) both X-ray and optical shutters open with objective mis-aligned; (d) both X-ray and optical shutter open with the position of the yaw of the objective mount adjusted to maximize overlap of the X-ray and optical beams at the sample position.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2651763&req=5

fig5: (a) Alignment of the focal point of the xenon lamp to the focal plane of the alignment camera using a camera mounted directly above the beamline and a pin at the sample position; the focus of the Schwarzschild objective can be clearly seen. The placement of a scintillator at the sample position allows the sample alignment camera to be used for alignment of the X-ray and optical axes: (b) X-ray shutter closed, optical shutter open; (c) both X-ray and optical shutters open with objective mis-aligned; (d) both X-ray and optical shutter open with the position of the yaw of the objective mount adjusted to maximize overlap of the X-ray and optical beams at the sample position.
Mentions: The use of the same on-axis objective for sample alignment and spectroscopic data collection allows unambiguous alignment of the X-ray and visible optical axes. In order to achieve this, the flexor-mounted Schwarzschild objective is translated in z (see Fig. 4a ▶ for definition of axes) so that the centre of rotation of the sample is at the working distance of the objective. This can be achieved easily by use of a camera mounted above the beamline, and its view of the focusing of the xenon light by the Schwarzschild objective is shown in Fig. 5(a) ▶; the presence of the cryostream allows the visible light to be observed. Placement of a scintillator at the sample position then allows the X-ray and optical axes to be made coincident at the sample position. This is achieved by adjustment of the ‘pitch’ and ‘yaw’ of the flexor mount of the collection optics (Figs. 5b–5d ▶). The UV–Vis illumination Schwarzschild objective can be translated in x, y and z using its motorized stage and multi-axis fibre mount (Newport) which allows pitch and yaw adjustment to the fibre input. The focal spot of this objective is aligned to the centre of rotation of the sample by use of a 12.5 µm pinhole placed at the sample position through which the intensity of transmitted light at the spectrometer is maximized.

Bottom Line: In situ spectroscopic methods such as UV-Vis absorption and (resonance) Raman can provide this, and can also provide a means of detecting X-ray-induced changes.Here, preliminary results are introduced from an on-axis UV-Vis absorption and Raman multimode spectrometer currently being integrated into the beamline environment at X10SA of the Swiss Light Source.The continuing development of the spectrometer is also outlined.

View Article: PubMed Central - HTML - PubMed

Affiliation: Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.

ABSTRACT
X-ray crystallography at third-generation synchrotron sources permits tremendous insight into the three-dimensional structure of macromolecules. Additional information is, however, often required to aid the transition from structure to function. In situ spectroscopic methods such as UV-Vis absorption and (resonance) Raman can provide this, and can also provide a means of detecting X-ray-induced changes. Here, preliminary results are introduced from an on-axis UV-Vis absorption and Raman multimode spectrometer currently being integrated into the beamline environment at X10SA of the Swiss Light Source. The continuing development of the spectrometer is also outlined.

Show MeSH
Related in: MedlinePlus