Limits...
Spillway-induced salmon head injury triggers the generation of brain alphaII-spectrin breakdown product biomarkers similar to mammalian traumatic brain injury.

Miracle A, Denslow ND, Kroll KJ, Liu MC, Wang KK - PLoS ONE (2009)

Bottom Line: Recent advances in biomedical research have resulted in the development of specific biomarkers for diagnostic testing of disease condition or physiological risk.We describe a novel application of SBDP biomarkers for head injury for migrating salmon.To our knowledge, this is the first documented cross-over use of a human molecular biomarker in a wildlife and operational risk management scenario.

View Article: PubMed Central - PubMed

Affiliation: Environmental Sustainability Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America. ann.miracle@pnl.gov

ABSTRACT
Recent advances in biomedical research have resulted in the development of specific biomarkers for diagnostic testing of disease condition or physiological risk. Of specific interest are alphaII-spectrin breakdown products (SBDPs), which are produced by proteolytic events in traumatic brain injury and have been used as biomarkers to predict the severity of injury in humans and other mammalian brain injury models. This study describes and demonstrates the successful use of antibody-based mammalian SBDP biomarkers to detect head injury in migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) that have been injured during passage through high-energy hydraulic environments present in spillways under different operational configurations. Mortality and injury assessment techniques currently measure only near-term direct mortality and easily observable acute injury. Injury-based biomarkers may serve as a quantitative indicator of subacute physical injury and recovery, and aid hydropower operators in evaluation of safest passage configuration and operation actions for migrating juvenile salmonids. We describe a novel application of SBDP biomarkers for head injury for migrating salmon. To our knowledge, this is the first documented cross-over use of a human molecular biomarker in a wildlife and operational risk management scenario.

Show MeSH

Related in: MedlinePlus

Endogenous and exogenous calpain and caspase-3 digestion of αII-spectrin in salmon brain lysate.Control Salmon brain was either untreated, or incubated with dATP and cytochrome-C (to activate endogenous caspase) or with CaCl2 (to activate endogenous calpain) or digested with exogenously added human calpain-2 or caspase-3. The masses of SBDP fragments or various molecular weight markers are as indicated (Left panel). Fragments produced by calpain are indicated with red arrows (SBDP150 and SBDP110), while those produced by caspase are indicated with blue arrows (SBDP150, SBDP120 and SBDP110). For comparison, rat brain lysate (control, or digested with calpain-2 (producing SBDP150 and SBDP145) or caspase-3 (producing SBDP150i and SBDP120) was also included (right panel), as described before [8], [27], [28].
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2637428&req=5

pone-0004491-g001: Endogenous and exogenous calpain and caspase-3 digestion of αII-spectrin in salmon brain lysate.Control Salmon brain was either untreated, or incubated with dATP and cytochrome-C (to activate endogenous caspase) or with CaCl2 (to activate endogenous calpain) or digested with exogenously added human calpain-2 or caspase-3. The masses of SBDP fragments or various molecular weight markers are as indicated (Left panel). Fragments produced by calpain are indicated with red arrows (SBDP150 and SBDP110), while those produced by caspase are indicated with blue arrows (SBDP150, SBDP120 and SBDP110). For comparison, rat brain lysate (control, or digested with calpain-2 (producing SBDP150 and SBDP145) or caspase-3 (producing SBDP150i and SBDP120) was also included (right panel), as described before [8], [27], [28].

Mentions: Whole salmon brain homogenates showed some similar SBDPs to rat SBDPs when digested with calpain and caspase and detected via Western blot with biotinylated anti-mammalian αII-spectrin (Fig. 1). As controls, rat brain lysates (untreated or digested with human calpain-2 or caspase-3) were also included. Calpain-digestion of rat brain lysates produced the known SBDPs of 150 kDa and 145 kDa (SBDP150, SBDP145), while capase-3 produced SBDPs of 150 kDa and 120 kDa (SBDP150i, SBDP120) [7]–[9].


Spillway-induced salmon head injury triggers the generation of brain alphaII-spectrin breakdown product biomarkers similar to mammalian traumatic brain injury.

Miracle A, Denslow ND, Kroll KJ, Liu MC, Wang KK - PLoS ONE (2009)

Endogenous and exogenous calpain and caspase-3 digestion of αII-spectrin in salmon brain lysate.Control Salmon brain was either untreated, or incubated with dATP and cytochrome-C (to activate endogenous caspase) or with CaCl2 (to activate endogenous calpain) or digested with exogenously added human calpain-2 or caspase-3. The masses of SBDP fragments or various molecular weight markers are as indicated (Left panel). Fragments produced by calpain are indicated with red arrows (SBDP150 and SBDP110), while those produced by caspase are indicated with blue arrows (SBDP150, SBDP120 and SBDP110). For comparison, rat brain lysate (control, or digested with calpain-2 (producing SBDP150 and SBDP145) or caspase-3 (producing SBDP150i and SBDP120) was also included (right panel), as described before [8], [27], [28].
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2637428&req=5

pone-0004491-g001: Endogenous and exogenous calpain and caspase-3 digestion of αII-spectrin in salmon brain lysate.Control Salmon brain was either untreated, or incubated with dATP and cytochrome-C (to activate endogenous caspase) or with CaCl2 (to activate endogenous calpain) or digested with exogenously added human calpain-2 or caspase-3. The masses of SBDP fragments or various molecular weight markers are as indicated (Left panel). Fragments produced by calpain are indicated with red arrows (SBDP150 and SBDP110), while those produced by caspase are indicated with blue arrows (SBDP150, SBDP120 and SBDP110). For comparison, rat brain lysate (control, or digested with calpain-2 (producing SBDP150 and SBDP145) or caspase-3 (producing SBDP150i and SBDP120) was also included (right panel), as described before [8], [27], [28].
Mentions: Whole salmon brain homogenates showed some similar SBDPs to rat SBDPs when digested with calpain and caspase and detected via Western blot with biotinylated anti-mammalian αII-spectrin (Fig. 1). As controls, rat brain lysates (untreated or digested with human calpain-2 or caspase-3) were also included. Calpain-digestion of rat brain lysates produced the known SBDPs of 150 kDa and 145 kDa (SBDP150, SBDP145), while capase-3 produced SBDPs of 150 kDa and 120 kDa (SBDP150i, SBDP120) [7]–[9].

Bottom Line: Recent advances in biomedical research have resulted in the development of specific biomarkers for diagnostic testing of disease condition or physiological risk.We describe a novel application of SBDP biomarkers for head injury for migrating salmon.To our knowledge, this is the first documented cross-over use of a human molecular biomarker in a wildlife and operational risk management scenario.

View Article: PubMed Central - PubMed

Affiliation: Environmental Sustainability Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America. ann.miracle@pnl.gov

ABSTRACT
Recent advances in biomedical research have resulted in the development of specific biomarkers for diagnostic testing of disease condition or physiological risk. Of specific interest are alphaII-spectrin breakdown products (SBDPs), which are produced by proteolytic events in traumatic brain injury and have been used as biomarkers to predict the severity of injury in humans and other mammalian brain injury models. This study describes and demonstrates the successful use of antibody-based mammalian SBDP biomarkers to detect head injury in migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) that have been injured during passage through high-energy hydraulic environments present in spillways under different operational configurations. Mortality and injury assessment techniques currently measure only near-term direct mortality and easily observable acute injury. Injury-based biomarkers may serve as a quantitative indicator of subacute physical injury and recovery, and aid hydropower operators in evaluation of safest passage configuration and operation actions for migrating juvenile salmonids. We describe a novel application of SBDP biomarkers for head injury for migrating salmon. To our knowledge, this is the first documented cross-over use of a human molecular biomarker in a wildlife and operational risk management scenario.

Show MeSH
Related in: MedlinePlus