Limits...
A study on the differential protein profiles in liver cells of heat stress rats with and without turpentine treatment.

Rajaseger G, Lim CL, Wui LK, Saravanan P, Tang K, Gopalakrishnakone P, Pen-huat YE, Lu J, Shabbir MM - Proteome Sci (2009)

Bottom Line: HS results in physiologic responses of increased temperature, heart rate and sweating.The effects of HS and T treatments alone and a combined treatments (T+HS) was performed in Wistar rat models.Most of these proteins are implicated in cell metabolism, as well as adaptive response to incurred oxidative stress and tissue damage due to T+HS and HS effects.

View Article: PubMed Central - HTML - PubMed

Affiliation: Defence Medical & Environmental Research Institute, Kent Ridge, Singapore. grajaseg@dso.org.sg

ABSTRACT

Background: Heat stress (HS) and related illnesses are a major concern in military, sports, and fire brigadiers. HS results in physiologic responses of increased temperature, heart rate and sweating. In heat stroke, inflammatory response plays an important role and it is evidenced that turpentine (T) induced circulating inflammatory cytokines reduced survival rate and duration at 42 degrees C. Here we report the alteration in the protein expression in liver cells upon HS with and without T treatment using two dimensional gel electrophoresis (2-DE), tryptic in-gel digestion and MALDI-TOF-MS/MS approaches.

Results: The effects of HS and T treatments alone and a combined treatments (T+HS) was performed in Wistar rat models. Proteomic analysis of liver in the HS and T+HS groups were analyzed compared to liver profiles of resting control and T treated groups. The study revealed a total of 25 and 29 differentially expressed proteins in the HS and T+HS groups respectively compared to resting control group. Fourteen proteins showed altered expression upon T treatment compared to resting control group. Proteins that are involved in metabolic and signal transduction pathways, defense, redox regulation, and cytoskeletal restructuring functions were identified. The altered expression of proteins reflected in 2D gels were corroborated by quantitative real time RT-PCR analysis of 8 protein coding genes representing metabolic and regulatory pathways for their expression and normalized with the house keeping gene beta-actin.

Conclusion: The present study has identified a number of differentially expressed proteins in the liver cells of rats subjected to T, HS and T+HS treatments. Most of these proteins are implicated in cell metabolism, as well as adaptive response to incurred oxidative stress and tissue damage due to T+HS and HS effects.

No MeSH data available.


Related in: MedlinePlus

Representative image of 2D gels (silver stained). Rat liver protein profile analyzed by 2D-GE of (A) Control (T = 37°C) group (B) Heat stress (HS, T = 42°C) group (C) turpentine (T) treatment group and (D) T with HS (T+HS) group. First dimension performed using immobilized pH 3–10 gradient strips, followed by SDS-PAGE in 10–20% polyacrylamide gels.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2626589&req=5

Figure 1: Representative image of 2D gels (silver stained). Rat liver protein profile analyzed by 2D-GE of (A) Control (T = 37°C) group (B) Heat stress (HS, T = 42°C) group (C) turpentine (T) treatment group and (D) T with HS (T+HS) group. First dimension performed using immobilized pH 3–10 gradient strips, followed by SDS-PAGE in 10–20% polyacrylamide gels.

Mentions: 2-DE of rat liver extract of treatment groups (HS, T, and T+HS)have identified a number of differentially expressed proteins compared to the control group as examined by scanning and image analysis of silver stained gels (figure 1). MALDI-TOF/MS/MS data analysis using MASCOT identified a number of GenBank annotated proteins under each condition that were then curated, and functional roles analyzed using pathway analysis software (Ingenuity Pathway Analysis, USA). The study revealed proteins of different functions including signal transduction pathways, cell and energy metabolism, defense, apoptosis, and respiration. A list of these proteins and their properties can be found in the additional file 1. 2-DE coupled with MS is currently the key approach for profiling thousands of proteins of a given proteome simultaneously and offer the possibility to analyze complex biological processes directly on the level of quantitative protein expression. However, this method is labour-intensive and not readily interfaced with protein identification by MS. In addition hydrophobic, extremely basic proteins and those with a very high or low MW are often difficult to analyse using this approach


A study on the differential protein profiles in liver cells of heat stress rats with and without turpentine treatment.

Rajaseger G, Lim CL, Wui LK, Saravanan P, Tang K, Gopalakrishnakone P, Pen-huat YE, Lu J, Shabbir MM - Proteome Sci (2009)

Representative image of 2D gels (silver stained). Rat liver protein profile analyzed by 2D-GE of (A) Control (T = 37°C) group (B) Heat stress (HS, T = 42°C) group (C) turpentine (T) treatment group and (D) T with HS (T+HS) group. First dimension performed using immobilized pH 3–10 gradient strips, followed by SDS-PAGE in 10–20% polyacrylamide gels.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2626589&req=5

Figure 1: Representative image of 2D gels (silver stained). Rat liver protein profile analyzed by 2D-GE of (A) Control (T = 37°C) group (B) Heat stress (HS, T = 42°C) group (C) turpentine (T) treatment group and (D) T with HS (T+HS) group. First dimension performed using immobilized pH 3–10 gradient strips, followed by SDS-PAGE in 10–20% polyacrylamide gels.
Mentions: 2-DE of rat liver extract of treatment groups (HS, T, and T+HS)have identified a number of differentially expressed proteins compared to the control group as examined by scanning and image analysis of silver stained gels (figure 1). MALDI-TOF/MS/MS data analysis using MASCOT identified a number of GenBank annotated proteins under each condition that were then curated, and functional roles analyzed using pathway analysis software (Ingenuity Pathway Analysis, USA). The study revealed proteins of different functions including signal transduction pathways, cell and energy metabolism, defense, apoptosis, and respiration. A list of these proteins and their properties can be found in the additional file 1. 2-DE coupled with MS is currently the key approach for profiling thousands of proteins of a given proteome simultaneously and offer the possibility to analyze complex biological processes directly on the level of quantitative protein expression. However, this method is labour-intensive and not readily interfaced with protein identification by MS. In addition hydrophobic, extremely basic proteins and those with a very high or low MW are often difficult to analyse using this approach

Bottom Line: HS results in physiologic responses of increased temperature, heart rate and sweating.The effects of HS and T treatments alone and a combined treatments (T+HS) was performed in Wistar rat models.Most of these proteins are implicated in cell metabolism, as well as adaptive response to incurred oxidative stress and tissue damage due to T+HS and HS effects.

View Article: PubMed Central - HTML - PubMed

Affiliation: Defence Medical & Environmental Research Institute, Kent Ridge, Singapore. grajaseg@dso.org.sg

ABSTRACT

Background: Heat stress (HS) and related illnesses are a major concern in military, sports, and fire brigadiers. HS results in physiologic responses of increased temperature, heart rate and sweating. In heat stroke, inflammatory response plays an important role and it is evidenced that turpentine (T) induced circulating inflammatory cytokines reduced survival rate and duration at 42 degrees C. Here we report the alteration in the protein expression in liver cells upon HS with and without T treatment using two dimensional gel electrophoresis (2-DE), tryptic in-gel digestion and MALDI-TOF-MS/MS approaches.

Results: The effects of HS and T treatments alone and a combined treatments (T+HS) was performed in Wistar rat models. Proteomic analysis of liver in the HS and T+HS groups were analyzed compared to liver profiles of resting control and T treated groups. The study revealed a total of 25 and 29 differentially expressed proteins in the HS and T+HS groups respectively compared to resting control group. Fourteen proteins showed altered expression upon T treatment compared to resting control group. Proteins that are involved in metabolic and signal transduction pathways, defense, redox regulation, and cytoskeletal restructuring functions were identified. The altered expression of proteins reflected in 2D gels were corroborated by quantitative real time RT-PCR analysis of 8 protein coding genes representing metabolic and regulatory pathways for their expression and normalized with the house keeping gene beta-actin.

Conclusion: The present study has identified a number of differentially expressed proteins in the liver cells of rats subjected to T, HS and T+HS treatments. Most of these proteins are implicated in cell metabolism, as well as adaptive response to incurred oxidative stress and tissue damage due to T+HS and HS effects.

No MeSH data available.


Related in: MedlinePlus