Limits...
Plasma membrane microdomains regulate turnover of transport proteins in yeast.

Grossmann G, Malinsky J, Stahlschmidt W, Loibl M, Weig-Meckl I, Frommer WB, Opekarová M, Tanner W - J. Cell Biol. (2008)

Bottom Line: Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers.These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4.Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cell Biology and Plant Physiology, University of Regensburg, 93053 Regensburg, Germany.

ABSTRACT
In this study, we investigate whether the stable segregation of proteins and lipids within the yeast plasma membrane serves a particular biological function. We show that 21 proteins cluster within or associate with the ergosterol-rich membrane compartment of Can1 (MCC). However, proteins of the endocytic machinery are excluded from MCC. In a screen, we identified 28 genes affecting MCC appearance and found that genes involved in lipid biosynthesis and vesicle transport are significantly overrepresented. Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers. These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4. Our data suggest that release from MCC makes these proteins accessible to the endocytic machinery. Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1. Thus, MCC represents a protective area within the plasma membrane to control turnover of transport proteins.

Show MeSH

Related in: MedlinePlus

Nce102 is required for MCC localization of Can1. Plasma membrane distribution of Can1-GFP was observed in nce102Δ cells expressing Nce102-mRFP under the control of a galactose-inducible promoter. After the induction, gradual restoration of the wild type–like patchy distribution of Can1-GFP was followed on tangential confocal sections. On transversal sections of the same cells, it is notable that the pattern of bud membrane was restored earlier (arrowheads). Bar, 5 μm.
© Copyright Policy
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC2600745&req=5

fig4: Nce102 is required for MCC localization of Can1. Plasma membrane distribution of Can1-GFP was observed in nce102Δ cells expressing Nce102-mRFP under the control of a galactose-inducible promoter. After the induction, gradual restoration of the wild type–like patchy distribution of Can1-GFP was followed on tangential confocal sections. On transversal sections of the same cells, it is notable that the pattern of bud membrane was restored earlier (arrowheads). Bar, 5 μm.

Mentions: To demonstrate directly the specific role of Nce102 in pattern formation, we tested whether the homogeneous distribution of Can1-GFP observed in nce102Δ can be restored to wild-type levels by regulated expression of the NCE102 gene. The nce102Δ strain expressing Can1-GFP was transformed with a vector containing NCE102 under a galactose-inducible promoter (pGal1). The nce102Δ phenotype persisted when the cells were grown in medium containing 2% raffinose or 2% glucose. When 2% galactose was used as a carbon source, the Nce102 protein was fully expressed in <2 h, and under these conditions the normal distribution of Can1 was restored (Fig. 4). This demonstrates that Nce102 is required for the de novo formation and probably also for the maintenance of the MCC compartment. However, the association of Can1 with MCC is delayed as compared with the appearance of Nce102-mRFP. After a 2-h induction, the mutant phenotype is rescued in buds and younger cells.


Plasma membrane microdomains regulate turnover of transport proteins in yeast.

Grossmann G, Malinsky J, Stahlschmidt W, Loibl M, Weig-Meckl I, Frommer WB, Opekarová M, Tanner W - J. Cell Biol. (2008)

Nce102 is required for MCC localization of Can1. Plasma membrane distribution of Can1-GFP was observed in nce102Δ cells expressing Nce102-mRFP under the control of a galactose-inducible promoter. After the induction, gradual restoration of the wild type–like patchy distribution of Can1-GFP was followed on tangential confocal sections. On transversal sections of the same cells, it is notable that the pattern of bud membrane was restored earlier (arrowheads). Bar, 5 μm.
© Copyright Policy
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC2600745&req=5

fig4: Nce102 is required for MCC localization of Can1. Plasma membrane distribution of Can1-GFP was observed in nce102Δ cells expressing Nce102-mRFP under the control of a galactose-inducible promoter. After the induction, gradual restoration of the wild type–like patchy distribution of Can1-GFP was followed on tangential confocal sections. On transversal sections of the same cells, it is notable that the pattern of bud membrane was restored earlier (arrowheads). Bar, 5 μm.
Mentions: To demonstrate directly the specific role of Nce102 in pattern formation, we tested whether the homogeneous distribution of Can1-GFP observed in nce102Δ can be restored to wild-type levels by regulated expression of the NCE102 gene. The nce102Δ strain expressing Can1-GFP was transformed with a vector containing NCE102 under a galactose-inducible promoter (pGal1). The nce102Δ phenotype persisted when the cells were grown in medium containing 2% raffinose or 2% glucose. When 2% galactose was used as a carbon source, the Nce102 protein was fully expressed in <2 h, and under these conditions the normal distribution of Can1 was restored (Fig. 4). This demonstrates that Nce102 is required for the de novo formation and probably also for the maintenance of the MCC compartment. However, the association of Can1 with MCC is delayed as compared with the appearance of Nce102-mRFP. After a 2-h induction, the mutant phenotype is rescued in buds and younger cells.

Bottom Line: Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers.These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4.Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cell Biology and Plant Physiology, University of Regensburg, 93053 Regensburg, Germany.

ABSTRACT
In this study, we investigate whether the stable segregation of proteins and lipids within the yeast plasma membrane serves a particular biological function. We show that 21 proteins cluster within or associate with the ergosterol-rich membrane compartment of Can1 (MCC). However, proteins of the endocytic machinery are excluded from MCC. In a screen, we identified 28 genes affecting MCC appearance and found that genes involved in lipid biosynthesis and vesicle transport are significantly overrepresented. Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers. These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4. Our data suggest that release from MCC makes these proteins accessible to the endocytic machinery. Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1. Thus, MCC represents a protective area within the plasma membrane to control turnover of transport proteins.

Show MeSH
Related in: MedlinePlus