Limits...
Transmission of avian influenza virus (H3N2) to dogs.

Song D, Kang B, Lee C, Jung K, Ha G, Kang D, Park S, Park B, Oh J - Emerging Infect. Dis. (2008)

Bottom Line: The beagles shed virus through nasal excretion, seroconverted, and became ill with severe necrotizing tracheobronchitis and bronchioalveolitis with accompanying clinical signs (e.g., high fever).Consistent with histologic observation of lung lesions, large amounts of avian influenza virus binding receptor (SAalpha 2,3-gal) were identified in canine tracheal, bronchial, and bronchiolar epithelial cells, which suggests potential for direct transmission of avian influenza virus (H3N2) from poultry to dogs.Our data provide evidence that dogs may play a role in interspecies transmission and spread of influenza virus.

View Article: PubMed Central - PubMed

Affiliation: Green Cross Veterinary Products Company, Ltd., Yong-in, South Korea.

ABSTRACT
In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) isolate. The beagles shed virus through nasal excretion, seroconverted, and became ill with severe necrotizing tracheobronchitis and bronchioalveolitis with accompanying clinical signs (e.g., high fever). Consistent with histologic observation of lung lesions, large amounts of avian influenza virus binding receptor (SAalpha 2,3-gal) were identified in canine tracheal, bronchial, and bronchiolar epithelial cells, which suggests potential for direct transmission of avian influenza virus (H3N2) from poultry to dogs. Our data provide evidence that dogs may play a role in interspecies transmission and spread of influenza virus.

Show MeSH

Related in: MedlinePlus

Body temperature, virus shedding, and antibody seroconversion after challenge with canine influenza virus. Body temperature was increased from 1 day postinoculation (dpi) and slowly decreased to normal temperature by 7 dpi. Virus shedding was detected from 1 dpi to 6 dpi by reverse transcription–PCR. However, the ELISA antibody titers increased after 6 dpi. Antibody titers were regarded as positive if percent inhibition (PI) was >50.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2600237&req=5

Figure 2: Body temperature, virus shedding, and antibody seroconversion after challenge with canine influenza virus. Body temperature was increased from 1 day postinoculation (dpi) and slowly decreased to normal temperature by 7 dpi. Virus shedding was detected from 1 dpi to 6 dpi by reverse transcription–PCR. However, the ELISA antibody titers increased after 6 dpi. Antibody titers were regarded as positive if percent inhibition (PI) was >50.

Mentions: In nucleoprotein-specific ELISA, the percent inhibition values for group I at 6 dpi were substantially higher than those for group NI (Figure 2); and the HI antibody titers of group I (HI titer 80) were induced at 8 dpi.


Transmission of avian influenza virus (H3N2) to dogs.

Song D, Kang B, Lee C, Jung K, Ha G, Kang D, Park S, Park B, Oh J - Emerging Infect. Dis. (2008)

Body temperature, virus shedding, and antibody seroconversion after challenge with canine influenza virus. Body temperature was increased from 1 day postinoculation (dpi) and slowly decreased to normal temperature by 7 dpi. Virus shedding was detected from 1 dpi to 6 dpi by reverse transcription–PCR. However, the ELISA antibody titers increased after 6 dpi. Antibody titers were regarded as positive if percent inhibition (PI) was >50.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2600237&req=5

Figure 2: Body temperature, virus shedding, and antibody seroconversion after challenge with canine influenza virus. Body temperature was increased from 1 day postinoculation (dpi) and slowly decreased to normal temperature by 7 dpi. Virus shedding was detected from 1 dpi to 6 dpi by reverse transcription–PCR. However, the ELISA antibody titers increased after 6 dpi. Antibody titers were regarded as positive if percent inhibition (PI) was >50.
Mentions: In nucleoprotein-specific ELISA, the percent inhibition values for group I at 6 dpi were substantially higher than those for group NI (Figure 2); and the HI antibody titers of group I (HI titer 80) were induced at 8 dpi.

Bottom Line: The beagles shed virus through nasal excretion, seroconverted, and became ill with severe necrotizing tracheobronchitis and bronchioalveolitis with accompanying clinical signs (e.g., high fever).Consistent with histologic observation of lung lesions, large amounts of avian influenza virus binding receptor (SAalpha 2,3-gal) were identified in canine tracheal, bronchial, and bronchiolar epithelial cells, which suggests potential for direct transmission of avian influenza virus (H3N2) from poultry to dogs.Our data provide evidence that dogs may play a role in interspecies transmission and spread of influenza virus.

View Article: PubMed Central - PubMed

Affiliation: Green Cross Veterinary Products Company, Ltd., Yong-in, South Korea.

ABSTRACT
In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) isolate. The beagles shed virus through nasal excretion, seroconverted, and became ill with severe necrotizing tracheobronchitis and bronchioalveolitis with accompanying clinical signs (e.g., high fever). Consistent with histologic observation of lung lesions, large amounts of avian influenza virus binding receptor (SAalpha 2,3-gal) were identified in canine tracheal, bronchial, and bronchiolar epithelial cells, which suggests potential for direct transmission of avian influenza virus (H3N2) from poultry to dogs. Our data provide evidence that dogs may play a role in interspecies transmission and spread of influenza virus.

Show MeSH
Related in: MedlinePlus