Limits...
Predicting cellular growth from gene expression signatures.

Airoldi EM, Huttenhower C, Gresham D, Lu C, Caudy AA, Dunham MJ, Broach JR, Botstein D, Troyanskaya OG - PLoS Comput. Biol. (2009)

Bottom Line: The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution.We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes.More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods.

View Article: PubMed Central - PubMed

Affiliation: Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, New Jersey, United States of America.

ABSTRACT
Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

Show MeSH

Related in: MedlinePlus

Growth phases of a typical cellular culture.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2599889&req=5

pcbi-1000257-g001: Growth phases of a typical cellular culture.

Mentions: Cellular growth is typically quantified in one of two experimental environments: batch culture or the chemostat. In a batch culture, cells are provided with a saturating amount of nutrient [1]. Growth is quantified by measuring the optical density (OD) of the culture over time, X. Figure 1 illustrates three typical phases of an OD growth curve: a slow initial phase (lag), a fast exponential growth phase (exp), and a slow saturation phase (stationary). Solving the appropriate differential equation leads to an exponential model of cellular growth, X = e μ·t. In practice, the OD of a culture is sampled at discrete points over time, and the growth rate parameter μ (in units of inverse hours h−1) is estimated from an exponential fit to the OD measurements.


Predicting cellular growth from gene expression signatures.

Airoldi EM, Huttenhower C, Gresham D, Lu C, Caudy AA, Dunham MJ, Broach JR, Botstein D, Troyanskaya OG - PLoS Comput. Biol. (2009)

Growth phases of a typical cellular culture.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2599889&req=5

pcbi-1000257-g001: Growth phases of a typical cellular culture.
Mentions: Cellular growth is typically quantified in one of two experimental environments: batch culture or the chemostat. In a batch culture, cells are provided with a saturating amount of nutrient [1]. Growth is quantified by measuring the optical density (OD) of the culture over time, X. Figure 1 illustrates three typical phases of an OD growth curve: a slow initial phase (lag), a fast exponential growth phase (exp), and a slow saturation phase (stationary). Solving the appropriate differential equation leads to an exponential model of cellular growth, X = e μ·t. In practice, the OD of a culture is sampled at discrete points over time, and the growth rate parameter μ (in units of inverse hours h−1) is estimated from an exponential fit to the OD measurements.

Bottom Line: The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution.We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes.More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods.

View Article: PubMed Central - PubMed

Affiliation: Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, New Jersey, United States of America.

ABSTRACT
Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

Show MeSH
Related in: MedlinePlus