Limits...
Acid, protons and Helicobacter pylori.

Sachs G, Meyer-Rosberg K, Scott DR, Melchers K - Yale J Biol Med (1996 May-Jun)

Bottom Line: This results in extremely effective inhibition of acid secretion.These drugs have been found to synergize with many antibiotics for eradication.The effect of the addition of 5 mM urea on the pmf was measured at different medium pH values.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine and Physiology, University of California, USA.

ABSTRACT
The anti-ulcer drugs that act as covalent inhibitors of the gastric acid pump are targeted to the gastric H+/K+ ATPase by virtue of accumulation in acid and conversion to the active sulfenamide. This results in extremely effective inhibition of acid secretion. Appropriate dosage is able to optimize acid control therapy for reflux and peptic ulcer disease as compared to H2 receptor antagonists. However, clinical data on recurrence show that Helicobacter pylori eradication should accompany treatment of the lesion. These drugs have been found to synergize with many antibiotics for eradication. The survival of aerobes depends on their ability to maintain a driving force for protons across their inner membrane, the sum of a pH and potential difference gradient, the protonmotive force (pmf). The transmembrane flux of protons across the F1F0 ATPase, driven by the pmf, is coupled to the synthesis of ATP. The internal pH of H. pylori was measured using the fluorescent dye probe, BCECF, and the membrane potential defined by the uptake of the carbocyanine dye, DiSC3 [5] at different pHs to mimic the gastric environment. The protonmotive force at pH 7.0 was composed of a delta pH of 1.4 (-84mV) and a delta potential difference of -131mV, to give a pmf of -215 mV. The effect of variations in external pH on survival of the bacteria in the absence of urea correlated with the effect of external pH on the ability of the bacteria to maintain a pmf. The effect of the addition of 5 mM urea on the pmf was measured at different medium pH values. Urea restored the pmf at pH 3.0 or 3.5, but abolished the pmf at pH 7.0 or higher, due the production of the alkalinizing cation, NH3. Hence H. pylori is an acid-tolerant neutrophile due to urease activity, but urease activity also limits its survival to an acidic environment. These data help explain the occupation of the stomach by the organism and its distribution between fundus and antrum. This distribution and its alteration by proton pump inhibitors also explains the synergism of proton pump inhibition and antibiotics such as amoxicillin and clarithromycin in H. pylori eradication.

Show MeSH

Related in: MedlinePlus

© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2589012&req=5


Acid, protons and Helicobacter pylori.

Sachs G, Meyer-Rosberg K, Scott DR, Melchers K - Yale J Biol Med (1996 May-Jun)

© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2589012&req=5

Bottom Line: This results in extremely effective inhibition of acid secretion.These drugs have been found to synergize with many antibiotics for eradication.The effect of the addition of 5 mM urea on the pmf was measured at different medium pH values.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine and Physiology, University of California, USA.

ABSTRACT
The anti-ulcer drugs that act as covalent inhibitors of the gastric acid pump are targeted to the gastric H+/K+ ATPase by virtue of accumulation in acid and conversion to the active sulfenamide. This results in extremely effective inhibition of acid secretion. Appropriate dosage is able to optimize acid control therapy for reflux and peptic ulcer disease as compared to H2 receptor antagonists. However, clinical data on recurrence show that Helicobacter pylori eradication should accompany treatment of the lesion. These drugs have been found to synergize with many antibiotics for eradication. The survival of aerobes depends on their ability to maintain a driving force for protons across their inner membrane, the sum of a pH and potential difference gradient, the protonmotive force (pmf). The transmembrane flux of protons across the F1F0 ATPase, driven by the pmf, is coupled to the synthesis of ATP. The internal pH of H. pylori was measured using the fluorescent dye probe, BCECF, and the membrane potential defined by the uptake of the carbocyanine dye, DiSC3 [5] at different pHs to mimic the gastric environment. The protonmotive force at pH 7.0 was composed of a delta pH of 1.4 (-84mV) and a delta potential difference of -131mV, to give a pmf of -215 mV. The effect of variations in external pH on survival of the bacteria in the absence of urea correlated with the effect of external pH on the ability of the bacteria to maintain a pmf. The effect of the addition of 5 mM urea on the pmf was measured at different medium pH values. Urea restored the pmf at pH 3.0 or 3.5, but abolished the pmf at pH 7.0 or higher, due the production of the alkalinizing cation, NH3. Hence H. pylori is an acid-tolerant neutrophile due to urease activity, but urease activity also limits its survival to an acidic environment. These data help explain the occupation of the stomach by the organism and its distribution between fundus and antrum. This distribution and its alteration by proton pump inhibitors also explains the synergism of proton pump inhibition and antibiotics such as amoxicillin and clarithromycin in H. pylori eradication.

Show MeSH
Related in: MedlinePlus