Limits...
Biofilm development by potentially pathogenic non-pigmented rapidly growing mycobacteria.

Esteban J, Martín-de-Hijas NZ, Kinnari TJ, Ayala G, Fernández-Roblas R, Gadea I - BMC Microbiol. (2008)

Bottom Line: All strains were able to develop biofilm in all the tested media.A difference could be detected for Mycobacterium abscessus in tap water, where it showed faster growth than all the other strains.Biofilm development seems to be a property of all the species of NPRGM and it depends on the nutrients present in the medium.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Clinical Microbiology, Fundación Jiménez Díaz-UTE, Madrid, Spain. jestebanmoreno@gmail.com

ABSTRACT

Background: A study to evaluate the biofilm-development ability in three different media (Middlebrook 7H9, sterile tap water and PBS-5% glucose) was performed with 19 collection strains from 15 different species on non-pigmented rapidly growing mycobacteria (NPRGM). A microtiter plate assay was developed to evaluate the percentage of covered surface of the microtiter plate wells in different days from day 1 to day 69.

Results: All strains were able to develop biofilm in all the tested media. Middlebrook 7H9 showed the fastest growth, followed by sterile tap water and PBS-5% glucose. A sigmoid growth curve was detected in all the strains both in Middlebrook 7H9 and in sterile tap water. A difference could be detected for Mycobacterium abscessus in tap water, where it showed faster growth than all the other strains.

Conclusion: Biofilm development seems to be a property of all the species of NPRGM and it depends on the nutrients present in the medium. The microtiter plate assay described here is a useful tool to evaluate differences in biofilm development among the different species of rapidly growing mycobacteria.

Show MeSH

Related in: MedlinePlus

Sliding motility of some strains. 1A: M. abscessus (DSM 44196T). 1B: M. septicum (ATCC 700731T). 1C: Diameter of the colony in the motility experiments. M. chelonae 1: ATCC 19235;M. chelonae 2: ATCC 35752T; M. fortuitum 1: ATCC 6841T; M. fortuitum 2: ATCC 13756; M. smegmatis 1: ATCC 607; M. smegmatis 2: ATCC 19420T; M. smegmatis 3: ATCC 14468.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2588597&req=5

Figure 1: Sliding motility of some strains. 1A: M. abscessus (DSM 44196T). 1B: M. septicum (ATCC 700731T). 1C: Diameter of the colony in the motility experiments. M. chelonae 1: ATCC 19235;M. chelonae 2: ATCC 35752T; M. fortuitum 1: ATCC 6841T; M. fortuitum 2: ATCC 13756; M. smegmatis 1: ATCC 607; M. smegmatis 2: ATCC 19420T; M. smegmatis 3: ATCC 14468.

Mentions: All strains with the exception of M. goodii, M. chelonae ATCC 19235, M. porcinum and M. septicum showed sliding motility on Middlebrook 7H9-0.3% agar plates at the 7th day (Figure 1). There were differences in the speed of sliding motility between strains, M. chelonae ATCC 35752T was found to be the slowest and M. abscessus the fastest (Figure 2D).


Biofilm development by potentially pathogenic non-pigmented rapidly growing mycobacteria.

Esteban J, Martín-de-Hijas NZ, Kinnari TJ, Ayala G, Fernández-Roblas R, Gadea I - BMC Microbiol. (2008)

Sliding motility of some strains. 1A: M. abscessus (DSM 44196T). 1B: M. septicum (ATCC 700731T). 1C: Diameter of the colony in the motility experiments. M. chelonae 1: ATCC 19235;M. chelonae 2: ATCC 35752T; M. fortuitum 1: ATCC 6841T; M. fortuitum 2: ATCC 13756; M. smegmatis 1: ATCC 607; M. smegmatis 2: ATCC 19420T; M. smegmatis 3: ATCC 14468.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2588597&req=5

Figure 1: Sliding motility of some strains. 1A: M. abscessus (DSM 44196T). 1B: M. septicum (ATCC 700731T). 1C: Diameter of the colony in the motility experiments. M. chelonae 1: ATCC 19235;M. chelonae 2: ATCC 35752T; M. fortuitum 1: ATCC 6841T; M. fortuitum 2: ATCC 13756; M. smegmatis 1: ATCC 607; M. smegmatis 2: ATCC 19420T; M. smegmatis 3: ATCC 14468.
Mentions: All strains with the exception of M. goodii, M. chelonae ATCC 19235, M. porcinum and M. septicum showed sliding motility on Middlebrook 7H9-0.3% agar plates at the 7th day (Figure 1). There were differences in the speed of sliding motility between strains, M. chelonae ATCC 35752T was found to be the slowest and M. abscessus the fastest (Figure 2D).

Bottom Line: All strains were able to develop biofilm in all the tested media.A difference could be detected for Mycobacterium abscessus in tap water, where it showed faster growth than all the other strains.Biofilm development seems to be a property of all the species of NPRGM and it depends on the nutrients present in the medium.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Clinical Microbiology, Fundación Jiménez Díaz-UTE, Madrid, Spain. jestebanmoreno@gmail.com

ABSTRACT

Background: A study to evaluate the biofilm-development ability in three different media (Middlebrook 7H9, sterile tap water and PBS-5% glucose) was performed with 19 collection strains from 15 different species on non-pigmented rapidly growing mycobacteria (NPRGM). A microtiter plate assay was developed to evaluate the percentage of covered surface of the microtiter plate wells in different days from day 1 to day 69.

Results: All strains were able to develop biofilm in all the tested media. Middlebrook 7H9 showed the fastest growth, followed by sterile tap water and PBS-5% glucose. A sigmoid growth curve was detected in all the strains both in Middlebrook 7H9 and in sterile tap water. A difference could be detected for Mycobacterium abscessus in tap water, where it showed faster growth than all the other strains.

Conclusion: Biofilm development seems to be a property of all the species of NPRGM and it depends on the nutrients present in the medium. The microtiter plate assay described here is a useful tool to evaluate differences in biofilm development among the different species of rapidly growing mycobacteria.

Show MeSH
Related in: MedlinePlus