Limits...
Sensorimotor cortex as a critical component of an 'extended' mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring?

Pineda JA - Behav Brain Funct (2008)

Bottom Line: A number of researchers have proposed that shared representations of motor actions may form a foundational cornerstone for higher order social processes, such as motor learning, action understanding, imitation, perspective taking, understanding facial emotions, and empathy.How does the matching of motor activation patterns occur?Or, as others have stated the problem more succinctly: "Why don't we imitate all the time?" In this review, we argue from an anatomical, physiological, modeling, and functional perspectives that a critical component of the human mirror neuron system is sensorimotor cortex.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departments of Cognitive Science and Neuroscience, University of California, San Diego, La Jolla, CA 92037-0515, USA. pineda@cogsci.ucsd.edu.

ABSTRACT
A core assumption of how humans understand and infer the intentions and beliefs of others is the existence of a functional self-other distinction. At least two neural systems have been proposed to manage such a critical distinction. One system, part of the classic motor system, is specialized for the preparation and execution of motor actions that are self realized and voluntary, while the other appears primarily involved in capturing and understanding the actions of non-self or others. The latter system, of which the mirror neuron system is part, is the canonical action 'resonance' system in the brain that has evolved to share many of the same circuits involved in motor control. Mirroring or 'shared circuit systems' are assumed to be involved in resonating, imitating, and/or simulating the actions of others. A number of researchers have proposed that shared representations of motor actions may form a foundational cornerstone for higher order social processes, such as motor learning, action understanding, imitation, perspective taking, understanding facial emotions, and empathy. However, mirroring systems that evolve from the classic motor system present at least three problems: a development, a correspondence, and a control problem. Developmentally, the question is how does a mirroring system arise? How do humans acquire the ability to simulate through mapping observed onto executed actions? Are mirror neurons innate and therefore genetically programmed? To what extent is learning necessary? In terms of the correspondence problem, the question is how does the observer agent know what the observed agent's resonance activation pattern is? How does the matching of motor activation patterns occur? Finally, in terms of the control problem, the issue is how to efficiently control a mirroring system when it is turned on automatically through observation? Or, as others have stated the problem more succinctly: "Why don't we imitate all the time?" In this review, we argue from an anatomical, physiological, modeling, and functional perspectives that a critical component of the human mirror neuron system is sensorimotor cortex. Not only are sensorimotor transformations necessary for computing the patterns of muscle activation and kinematics during action observation but they provide potential answers to the development, correspondence and control problems.

No MeSH data available.


Related in: MedlinePlus

Anatomical view of a human brain showing areas involved with the mirror neuron system.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2577683&req=5

Figure 2: Anatomical view of a human brain showing areas involved with the mirror neuron system.

Mentions: The mirror neuron system has been widely defined as consisting of three interrelated areas: ventral premotor area (PMv) of the inferior frontal gyrus (area F5 in monkeys), parietal frontal (PF) in the rostral cortical convexity of the inferior parietal lobule (IPL), and the superior temporal sulcus (STS) (see Figures 1, 2 and 3, as well as Table 1 for a description of these areas). The mirror neuron circuit in monkeys [4,22] begins in the rostral part of the superior temporal sulcus, although no mirror neurons per se have been reported in this area. Information is then thought to flow to the parietal frontal area on the rostral cortical convexity of the inferior parietal lobule. A subset of the cells in this region has mirror properties: i.e., they discharge both when the monkey executes as well as observes an action. Parietal frontal area, in turn, sends projections to area F5 of the ventral premotor area, where a subset of cells (10–20%) exhibits mirror properties. Thus, the core mirror neuron system would be defined as those areas that contain mirror-like neurons, which at this point includes primarily the rostral convexity of the inferior parietal lobule or parietal frontal area and ventral premotor area.


Sensorimotor cortex as a critical component of an 'extended' mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring?

Pineda JA - Behav Brain Funct (2008)

Anatomical view of a human brain showing areas involved with the mirror neuron system.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2577683&req=5

Figure 2: Anatomical view of a human brain showing areas involved with the mirror neuron system.
Mentions: The mirror neuron system has been widely defined as consisting of three interrelated areas: ventral premotor area (PMv) of the inferior frontal gyrus (area F5 in monkeys), parietal frontal (PF) in the rostral cortical convexity of the inferior parietal lobule (IPL), and the superior temporal sulcus (STS) (see Figures 1, 2 and 3, as well as Table 1 for a description of these areas). The mirror neuron circuit in monkeys [4,22] begins in the rostral part of the superior temporal sulcus, although no mirror neurons per se have been reported in this area. Information is then thought to flow to the parietal frontal area on the rostral cortical convexity of the inferior parietal lobule. A subset of the cells in this region has mirror properties: i.e., they discharge both when the monkey executes as well as observes an action. Parietal frontal area, in turn, sends projections to area F5 of the ventral premotor area, where a subset of cells (10–20%) exhibits mirror properties. Thus, the core mirror neuron system would be defined as those areas that contain mirror-like neurons, which at this point includes primarily the rostral convexity of the inferior parietal lobule or parietal frontal area and ventral premotor area.

Bottom Line: A number of researchers have proposed that shared representations of motor actions may form a foundational cornerstone for higher order social processes, such as motor learning, action understanding, imitation, perspective taking, understanding facial emotions, and empathy.How does the matching of motor activation patterns occur?Or, as others have stated the problem more succinctly: "Why don't we imitate all the time?" In this review, we argue from an anatomical, physiological, modeling, and functional perspectives that a critical component of the human mirror neuron system is sensorimotor cortex.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departments of Cognitive Science and Neuroscience, University of California, San Diego, La Jolla, CA 92037-0515, USA. pineda@cogsci.ucsd.edu.

ABSTRACT
A core assumption of how humans understand and infer the intentions and beliefs of others is the existence of a functional self-other distinction. At least two neural systems have been proposed to manage such a critical distinction. One system, part of the classic motor system, is specialized for the preparation and execution of motor actions that are self realized and voluntary, while the other appears primarily involved in capturing and understanding the actions of non-self or others. The latter system, of which the mirror neuron system is part, is the canonical action 'resonance' system in the brain that has evolved to share many of the same circuits involved in motor control. Mirroring or 'shared circuit systems' are assumed to be involved in resonating, imitating, and/or simulating the actions of others. A number of researchers have proposed that shared representations of motor actions may form a foundational cornerstone for higher order social processes, such as motor learning, action understanding, imitation, perspective taking, understanding facial emotions, and empathy. However, mirroring systems that evolve from the classic motor system present at least three problems: a development, a correspondence, and a control problem. Developmentally, the question is how does a mirroring system arise? How do humans acquire the ability to simulate through mapping observed onto executed actions? Are mirror neurons innate and therefore genetically programmed? To what extent is learning necessary? In terms of the correspondence problem, the question is how does the observer agent know what the observed agent's resonance activation pattern is? How does the matching of motor activation patterns occur? Finally, in terms of the control problem, the issue is how to efficiently control a mirroring system when it is turned on automatically through observation? Or, as others have stated the problem more succinctly: "Why don't we imitate all the time?" In this review, we argue from an anatomical, physiological, modeling, and functional perspectives that a critical component of the human mirror neuron system is sensorimotor cortex. Not only are sensorimotor transformations necessary for computing the patterns of muscle activation and kinematics during action observation but they provide potential answers to the development, correspondence and control problems.

No MeSH data available.


Related in: MedlinePlus