Limits...
Stem cells have different needs for REST.

Hermanson O - PLoS Biol. (2008)

View Article: PubMed Central - PubMed

Affiliation: Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden. Ola.Hermanson@ki.se

Show MeSH
REST Repression Is Associated with Many Different Transcriptional CoregulatorsA schematic model of REST interactions with some selected transcriptional coregulators and chromatin modifying proteins. HDAC1/2 deacetylate lysine 9 on histone H3 (H3K9), and low acetylation and high methylation of this lysine when situated in a promoter close to a transcription start site is associated with transcriptional repression. The histone demethylase LSD1 represses transcription by demethylating lysine 4 on histone H3 (H3K4). H3K4 is a residue that, when (tri)methylated, attracts and recruits transcription initiation factors, and thus H3K4 methylation is associated with transcriptional activation, in contrast to, e.g., H3K9.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2573942&req=5

pbio-0060271-g001: REST Repression Is Associated with Many Different Transcriptional CoregulatorsA schematic model of REST interactions with some selected transcriptional coregulators and chromatin modifying proteins. HDAC1/2 deacetylate lysine 9 on histone H3 (H3K9), and low acetylation and high methylation of this lysine when situated in a promoter close to a transcription start site is associated with transcriptional repression. The histone demethylase LSD1 represses transcription by demethylating lysine 4 on histone H3 (H3K4). H3K4 is a residue that, when (tri)methylated, attracts and recruits transcription initiation factors, and thus H3K4 methylation is associated with transcriptional activation, in contrast to, e.g., H3K9.

Mentions: Since its discovery, REST has been the subject of intense research in the fields of developmental biology and transcription. Due to the well-defined RE1 response element and the subsequent identification of numerous endogenous target genes containing this site [6,7], REST proved to be versatile for investigating basic transcriptional mechanisms including more epigenetic mechanisms involving activation or silencing by modification of chromatin proteins (http://en.wikipedia.org/wiki/Chromatin), histones associated with DNA. Soon after the initial reports connecting transcriptional activation with histone acetylation (associated with “open” chromatin and accessible DNA) and transcriptional repression with histone deacetylation (associated with “compact” chromatin and less accessible DNA), the N-terminal repression domain of REST was shown to bind the transcriptional repressor Sin3A and associated histone deacetylases (HDACs) such as HDAC1 and HDAC2 (Figure 1) [8,9].


Stem cells have different needs for REST.

Hermanson O - PLoS Biol. (2008)

REST Repression Is Associated with Many Different Transcriptional CoregulatorsA schematic model of REST interactions with some selected transcriptional coregulators and chromatin modifying proteins. HDAC1/2 deacetylate lysine 9 on histone H3 (H3K9), and low acetylation and high methylation of this lysine when situated in a promoter close to a transcription start site is associated with transcriptional repression. The histone demethylase LSD1 represses transcription by demethylating lysine 4 on histone H3 (H3K4). H3K4 is a residue that, when (tri)methylated, attracts and recruits transcription initiation factors, and thus H3K4 methylation is associated with transcriptional activation, in contrast to, e.g., H3K9.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2573942&req=5

pbio-0060271-g001: REST Repression Is Associated with Many Different Transcriptional CoregulatorsA schematic model of REST interactions with some selected transcriptional coregulators and chromatin modifying proteins. HDAC1/2 deacetylate lysine 9 on histone H3 (H3K9), and low acetylation and high methylation of this lysine when situated in a promoter close to a transcription start site is associated with transcriptional repression. The histone demethylase LSD1 represses transcription by demethylating lysine 4 on histone H3 (H3K4). H3K4 is a residue that, when (tri)methylated, attracts and recruits transcription initiation factors, and thus H3K4 methylation is associated with transcriptional activation, in contrast to, e.g., H3K9.
Mentions: Since its discovery, REST has been the subject of intense research in the fields of developmental biology and transcription. Due to the well-defined RE1 response element and the subsequent identification of numerous endogenous target genes containing this site [6,7], REST proved to be versatile for investigating basic transcriptional mechanisms including more epigenetic mechanisms involving activation or silencing by modification of chromatin proteins (http://en.wikipedia.org/wiki/Chromatin), histones associated with DNA. Soon after the initial reports connecting transcriptional activation with histone acetylation (associated with “open” chromatin and accessible DNA) and transcriptional repression with histone deacetylation (associated with “compact” chromatin and less accessible DNA), the N-terminal repression domain of REST was shown to bind the transcriptional repressor Sin3A and associated histone deacetylases (HDACs) such as HDAC1 and HDAC2 (Figure 1) [8,9].

View Article: PubMed Central - PubMed

Affiliation: Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden. Ola.Hermanson@ki.se

Show MeSH