Limits...
Broca's area, sentence comprehension, and working memory: an fMRI Study.

Rogalsky C, Matchin W, Hickok G - Front Hum Neurosci (2008)

Bottom Line: A second experiment used fMRI to document the brain regions underlying this effect.However, during concurrent speech articulation (but not finger-tapping) this complexity effect was eliminated in the pars opercularis suggesting that this region supports sentence comprehension via its role in articulatory rehearsal.Activity in the pars triangularis was modulated by the finger-tapping task, but not the speech articulation task.

View Article: PubMed Central - PubMed

Affiliation: Center for Cognitive Neuroscience & Department of Cognitive Sciences, University of California Irvine, USA.

ABSTRACT
The role of Broca's area in sentence processing remains controversial. According to one view, Broca's area is involved in processing a subcomponent of syntactic processing. Another view holds that it contributes to sentence processing via verbal working memory. Sub-regions of Broca's area have been identified that are more active during the processing of complex (object-relative clause) sentences compared to simple (subject-relative clause) sentences. The present study aimed to determine if this complexity effect can be accounted for in terms of the articulatory rehearsal component of verbal working memory. In a behavioral experiment, subjects were asked to comprehend sentences during concurrent speech articulation which minimizes articulatory rehearsal as a resource for sentence comprehension. A finger-tapping task was used as a control concurrent task. Only the object-relative clause sentences were more difficult to comprehend during speech articulation than during the manual task, showing that articulatory rehearsal does contribute to sentence processing. A second experiment used fMRI to document the brain regions underlying this effect. Subjects judged the plausibility of sentences during speech articulation, a finger-tapping task, or without a concurrent task. In the absence of a secondary task, Broca's area (pars triangularis and pars opercularis) demonstrated an increase in activity as a function of syntactic complexity. However, during concurrent speech articulation (but not finger-tapping) this complexity effect was eliminated in the pars opercularis suggesting that this region supports sentence comprehension via its role in articulatory rehearsal. Activity in the pars triangularis was modulated by the finger-tapping task, but not the speech articulation task.

No MeSH data available.


Related in: MedlinePlus

Left inferior frontal voxel clusters more active during the presentation of object-relative clause sentences than subject-relative clause sentences (p < 0.005). Clusters shown are those meeting these criteria while subjects were performing (A) no secondary task, (B) articulation, or (C) a finger-tapping task. Talairach coordinates for peak activity in each cluster are listed.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2572210&req=5

Figure 5: Left inferior frontal voxel clusters more active during the presentation of object-relative clause sentences than subject-relative clause sentences (p < 0.005). Clusters shown are those meeting these criteria while subjects were performing (A) no secondary task, (B) articulation, or (C) a finger-tapping task. Talairach coordinates for peak activity in each cluster are listed.

Mentions: In the absence of a secondary task, two distinct voxel clusters in Broca's area responded more during the perception of object-relative sentences than subject-relative sentences (p < 0.005): a portion of the pars triangularis (−41 38 14), and a portion of the pars triangularis (−42 13 23) (Figure 5A and Table 3). Additional clusters (setting a minimum cluster threshold at 5 contiguous voxels) demonstrating this object-relative versus subject-relative sentence preference were found in the right inferior frontal gyrus (57 16 20), as well as in the left middle frontal gyrus, left pre-central gyrus, and left superior temporal gyrus (Table 3). A conjunction map of voxels responding more to the object-relative sentences than to the subject-relative sentences (p < 0.005) with no secondary task and the voxels active during articulation alone (p < 0.005) indicates that the left pars opercularis region demonstrating the complexity effect (in the absence of a secondary task), is also involved in speech articulation (Figure 6).


Broca's area, sentence comprehension, and working memory: an fMRI Study.

Rogalsky C, Matchin W, Hickok G - Front Hum Neurosci (2008)

Left inferior frontal voxel clusters more active during the presentation of object-relative clause sentences than subject-relative clause sentences (p < 0.005). Clusters shown are those meeting these criteria while subjects were performing (A) no secondary task, (B) articulation, or (C) a finger-tapping task. Talairach coordinates for peak activity in each cluster are listed.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2572210&req=5

Figure 5: Left inferior frontal voxel clusters more active during the presentation of object-relative clause sentences than subject-relative clause sentences (p < 0.005). Clusters shown are those meeting these criteria while subjects were performing (A) no secondary task, (B) articulation, or (C) a finger-tapping task. Talairach coordinates for peak activity in each cluster are listed.
Mentions: In the absence of a secondary task, two distinct voxel clusters in Broca's area responded more during the perception of object-relative sentences than subject-relative sentences (p < 0.005): a portion of the pars triangularis (−41 38 14), and a portion of the pars triangularis (−42 13 23) (Figure 5A and Table 3). Additional clusters (setting a minimum cluster threshold at 5 contiguous voxels) demonstrating this object-relative versus subject-relative sentence preference were found in the right inferior frontal gyrus (57 16 20), as well as in the left middle frontal gyrus, left pre-central gyrus, and left superior temporal gyrus (Table 3). A conjunction map of voxels responding more to the object-relative sentences than to the subject-relative sentences (p < 0.005) with no secondary task and the voxels active during articulation alone (p < 0.005) indicates that the left pars opercularis region demonstrating the complexity effect (in the absence of a secondary task), is also involved in speech articulation (Figure 6).

Bottom Line: A second experiment used fMRI to document the brain regions underlying this effect.However, during concurrent speech articulation (but not finger-tapping) this complexity effect was eliminated in the pars opercularis suggesting that this region supports sentence comprehension via its role in articulatory rehearsal.Activity in the pars triangularis was modulated by the finger-tapping task, but not the speech articulation task.

View Article: PubMed Central - PubMed

Affiliation: Center for Cognitive Neuroscience & Department of Cognitive Sciences, University of California Irvine, USA.

ABSTRACT
The role of Broca's area in sentence processing remains controversial. According to one view, Broca's area is involved in processing a subcomponent of syntactic processing. Another view holds that it contributes to sentence processing via verbal working memory. Sub-regions of Broca's area have been identified that are more active during the processing of complex (object-relative clause) sentences compared to simple (subject-relative clause) sentences. The present study aimed to determine if this complexity effect can be accounted for in terms of the articulatory rehearsal component of verbal working memory. In a behavioral experiment, subjects were asked to comprehend sentences during concurrent speech articulation which minimizes articulatory rehearsal as a resource for sentence comprehension. A finger-tapping task was used as a control concurrent task. Only the object-relative clause sentences were more difficult to comprehend during speech articulation than during the manual task, showing that articulatory rehearsal does contribute to sentence processing. A second experiment used fMRI to document the brain regions underlying this effect. Subjects judged the plausibility of sentences during speech articulation, a finger-tapping task, or without a concurrent task. In the absence of a secondary task, Broca's area (pars triangularis and pars opercularis) demonstrated an increase in activity as a function of syntactic complexity. However, during concurrent speech articulation (but not finger-tapping) this complexity effect was eliminated in the pars opercularis suggesting that this region supports sentence comprehension via its role in articulatory rehearsal. Activity in the pars triangularis was modulated by the finger-tapping task, but not the speech articulation task.

No MeSH data available.


Related in: MedlinePlus