Limits...
Feeling present in arousing virtual reality worlds: prefrontal brain regions differentially orchestrate presence experience in adults and children.

Baumgartner T, Speck D, Wettstein D, Masnari O, Beeli G, Jäncke L - Front Hum Neurosci (2008)

Bottom Line: The experience of presence in adult subjects was found to be modulated by two major strategies involving two homologous prefrontal brain structures.In contrast, there was no evidence of these two strategies in children.In fact, anatomical analyses showed that these two prefrontal areas have not yet reached full maturity in children.

View Article: PubMed Central - PubMed

Affiliation: Institute of Psychology, Department of Neuropsychology, University of Zurich Switzerland. t.baumgartner@iew.uzh.ch

ABSTRACT
Virtual reality (VR) is a powerful tool for simulating aspects of the real world. The success of VR is thought to depend on its ability to evoke a sense of "being there", that is, the feeling of "Presence". In view of the rapid progress in the development of increasingly more sophisticated virtual environments (VE), the importance of understanding the neural underpinnings of presence is growing. To date however, the neural correlates of this phenomenon have received very scant attention. An fMRI-based study with 52 adults and 25 children was therefore conducted using a highly immersive VE. The experience of presence in adult subjects was found to be modulated by two major strategies involving two homologous prefrontal brain structures. Whereas the right DLPFC controlled the sense of presence by down-regulating the activation in the egocentric dorsal visual processing stream, the left DLPFC up-regulated widespread areas of the medial prefrontal cortex known to be involved in self-reflective and stimulus-independent thoughts. In contrast, there was no evidence of these two strategies in children. In fact, anatomical analyses showed that these two prefrontal areas have not yet reached full maturity in children. Taken together, this study presents the first findings that show activation of a highly specific neural network orchestrating the experience of presence in adult subjects, and that the absence of activity in this neural network might contribute to the generally increased susceptibility of children for the experience of presence in VEs.

No MeSH data available.


Related in: MedlinePlus

Negative connectivity with right and positive connectivity with left DLPFC in adults. (A) Negative connectivity (blue colour) with right DLPFC in the dorsal visual stream (including superior and inferior parietal gyrus as well as superior occipital gyrus) and sensory-motor areas in adult subjects (at p < 0.005, cluster extent: 10 voxels; SPG, superior parietal gyrus; IPG, inferior parietal gyrus; MOG, middle occipital gyrus; SOG, superior occipital gyrus). (B) Significant differences in negative connectivity between right DLPFC and left DLPFC in areas depicted in (A), at p < 0.005 (yellow), p < 0.01 (violet) and p < 0.05 (green, all with a cluster extent of 10 voxels). Most areas, except for the ones in blue colour, depict a clear right-sided lateralization pattern in negative connectivity. (C) Positive connectivity (red colour) with left DLPFC in medial PFC (including ACC), extrastriate visual cortex and subcortical areas (including dorso-medial Thalamus and Brainstem) in adult subjects (at p < 0.005, cluster extent: 10 voxels; MPFC, medial prefrontal cortex; Bst, Brainstem; Tha, Thalamus; Cau, Caudatus; PHiG, Parahippocampal Gyrus). (D) Significant differences in positive connectivity between left DLPFC and right DLPFC in areas depicted in (C), at p < 0.005 (yellow), p < 0.01 (violet) and p < 0.05 (green, all with a cluster extent of 10 voxels, areas in red colour illustrate no significant difference). All areas, except for a few voxels in the medial PFC in red colour, depict a clear left-sided lateralization pattern in positive connectivity in adult subjects.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2572200&req=5

Figure 3: Negative connectivity with right and positive connectivity with left DLPFC in adults. (A) Negative connectivity (blue colour) with right DLPFC in the dorsal visual stream (including superior and inferior parietal gyrus as well as superior occipital gyrus) and sensory-motor areas in adult subjects (at p < 0.005, cluster extent: 10 voxels; SPG, superior parietal gyrus; IPG, inferior parietal gyrus; MOG, middle occipital gyrus; SOG, superior occipital gyrus). (B) Significant differences in negative connectivity between right DLPFC and left DLPFC in areas depicted in (A), at p < 0.005 (yellow), p < 0.01 (violet) and p < 0.05 (green, all with a cluster extent of 10 voxels). Most areas, except for the ones in blue colour, depict a clear right-sided lateralization pattern in negative connectivity. (C) Positive connectivity (red colour) with left DLPFC in medial PFC (including ACC), extrastriate visual cortex and subcortical areas (including dorso-medial Thalamus and Brainstem) in adult subjects (at p < 0.005, cluster extent: 10 voxels; MPFC, medial prefrontal cortex; Bst, Brainstem; Tha, Thalamus; Cau, Caudatus; PHiG, Parahippocampal Gyrus). (D) Significant differences in positive connectivity between left DLPFC and right DLPFC in areas depicted in (C), at p < 0.005 (yellow), p < 0.01 (violet) and p < 0.05 (green, all with a cluster extent of 10 voxels, areas in red colour illustrate no significant difference). All areas, except for a few voxels in the medial PFC in red colour, depict a clear left-sided lateralization pattern in positive connectivity in adult subjects.

Mentions: In a first analysis, we attempted to answer the following questions: Do all adults use bilateral DLPFC to control and regulate their presence experience, irrespective of their presence rating? Moreover, are there lateralization differences between the left DLPFC and right DLPFC? We found that adults, irrespective of their presence rating, do indeed recruit bilateral DLPFC to modulate their presence experience. Moreover, there are strong lateralization differences. Whereas the right DLPFC mainly down-regulated the activation in the dorsal visual processing stream and in sensory-motor areas (Figures 3A,B and Table S7), the left DLPFC mainly up-regulated widespread areas of the medial prefrontal cortex, including anterior cingulate cortex (ACC, BA 24, 32, 25) and middle and superior frontal gyrus (BA 10, 11). In addition, the left DLPFC showed positive connectivity with subcortical areas [including brainstem and mediodorsal thalamus which has prominent anatomical interconnections with the DLPFC (Giguere and Goldman-Rakic, 1988)] as well as areas of the primary and extrastriate visual system that were not activated in the contrast High Presence > Low Presence (Figures 3C,D and Table S7). Thus, the data suggest that in adult subjects, the presence experience is mainly regulated and controlled by down-regulating the immersive visual-spatial input in posterior brain regions as well as by up-regulating medial areas of the PFC.


Feeling present in arousing virtual reality worlds: prefrontal brain regions differentially orchestrate presence experience in adults and children.

Baumgartner T, Speck D, Wettstein D, Masnari O, Beeli G, Jäncke L - Front Hum Neurosci (2008)

Negative connectivity with right and positive connectivity with left DLPFC in adults. (A) Negative connectivity (blue colour) with right DLPFC in the dorsal visual stream (including superior and inferior parietal gyrus as well as superior occipital gyrus) and sensory-motor areas in adult subjects (at p < 0.005, cluster extent: 10 voxels; SPG, superior parietal gyrus; IPG, inferior parietal gyrus; MOG, middle occipital gyrus; SOG, superior occipital gyrus). (B) Significant differences in negative connectivity between right DLPFC and left DLPFC in areas depicted in (A), at p < 0.005 (yellow), p < 0.01 (violet) and p < 0.05 (green, all with a cluster extent of 10 voxels). Most areas, except for the ones in blue colour, depict a clear right-sided lateralization pattern in negative connectivity. (C) Positive connectivity (red colour) with left DLPFC in medial PFC (including ACC), extrastriate visual cortex and subcortical areas (including dorso-medial Thalamus and Brainstem) in adult subjects (at p < 0.005, cluster extent: 10 voxels; MPFC, medial prefrontal cortex; Bst, Brainstem; Tha, Thalamus; Cau, Caudatus; PHiG, Parahippocampal Gyrus). (D) Significant differences in positive connectivity between left DLPFC and right DLPFC in areas depicted in (C), at p < 0.005 (yellow), p < 0.01 (violet) and p < 0.05 (green, all with a cluster extent of 10 voxels, areas in red colour illustrate no significant difference). All areas, except for a few voxels in the medial PFC in red colour, depict a clear left-sided lateralization pattern in positive connectivity in adult subjects.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2572200&req=5

Figure 3: Negative connectivity with right and positive connectivity with left DLPFC in adults. (A) Negative connectivity (blue colour) with right DLPFC in the dorsal visual stream (including superior and inferior parietal gyrus as well as superior occipital gyrus) and sensory-motor areas in adult subjects (at p < 0.005, cluster extent: 10 voxels; SPG, superior parietal gyrus; IPG, inferior parietal gyrus; MOG, middle occipital gyrus; SOG, superior occipital gyrus). (B) Significant differences in negative connectivity between right DLPFC and left DLPFC in areas depicted in (A), at p < 0.005 (yellow), p < 0.01 (violet) and p < 0.05 (green, all with a cluster extent of 10 voxels). Most areas, except for the ones in blue colour, depict a clear right-sided lateralization pattern in negative connectivity. (C) Positive connectivity (red colour) with left DLPFC in medial PFC (including ACC), extrastriate visual cortex and subcortical areas (including dorso-medial Thalamus and Brainstem) in adult subjects (at p < 0.005, cluster extent: 10 voxels; MPFC, medial prefrontal cortex; Bst, Brainstem; Tha, Thalamus; Cau, Caudatus; PHiG, Parahippocampal Gyrus). (D) Significant differences in positive connectivity between left DLPFC and right DLPFC in areas depicted in (C), at p < 0.005 (yellow), p < 0.01 (violet) and p < 0.05 (green, all with a cluster extent of 10 voxels, areas in red colour illustrate no significant difference). All areas, except for a few voxels in the medial PFC in red colour, depict a clear left-sided lateralization pattern in positive connectivity in adult subjects.
Mentions: In a first analysis, we attempted to answer the following questions: Do all adults use bilateral DLPFC to control and regulate their presence experience, irrespective of their presence rating? Moreover, are there lateralization differences between the left DLPFC and right DLPFC? We found that adults, irrespective of their presence rating, do indeed recruit bilateral DLPFC to modulate their presence experience. Moreover, there are strong lateralization differences. Whereas the right DLPFC mainly down-regulated the activation in the dorsal visual processing stream and in sensory-motor areas (Figures 3A,B and Table S7), the left DLPFC mainly up-regulated widespread areas of the medial prefrontal cortex, including anterior cingulate cortex (ACC, BA 24, 32, 25) and middle and superior frontal gyrus (BA 10, 11). In addition, the left DLPFC showed positive connectivity with subcortical areas [including brainstem and mediodorsal thalamus which has prominent anatomical interconnections with the DLPFC (Giguere and Goldman-Rakic, 1988)] as well as areas of the primary and extrastriate visual system that were not activated in the contrast High Presence > Low Presence (Figures 3C,D and Table S7). Thus, the data suggest that in adult subjects, the presence experience is mainly regulated and controlled by down-regulating the immersive visual-spatial input in posterior brain regions as well as by up-regulating medial areas of the PFC.

Bottom Line: The experience of presence in adult subjects was found to be modulated by two major strategies involving two homologous prefrontal brain structures.In contrast, there was no evidence of these two strategies in children.In fact, anatomical analyses showed that these two prefrontal areas have not yet reached full maturity in children.

View Article: PubMed Central - PubMed

Affiliation: Institute of Psychology, Department of Neuropsychology, University of Zurich Switzerland. t.baumgartner@iew.uzh.ch

ABSTRACT
Virtual reality (VR) is a powerful tool for simulating aspects of the real world. The success of VR is thought to depend on its ability to evoke a sense of "being there", that is, the feeling of "Presence". In view of the rapid progress in the development of increasingly more sophisticated virtual environments (VE), the importance of understanding the neural underpinnings of presence is growing. To date however, the neural correlates of this phenomenon have received very scant attention. An fMRI-based study with 52 adults and 25 children was therefore conducted using a highly immersive VE. The experience of presence in adult subjects was found to be modulated by two major strategies involving two homologous prefrontal brain structures. Whereas the right DLPFC controlled the sense of presence by down-regulating the activation in the egocentric dorsal visual processing stream, the left DLPFC up-regulated widespread areas of the medial prefrontal cortex known to be involved in self-reflective and stimulus-independent thoughts. In contrast, there was no evidence of these two strategies in children. In fact, anatomical analyses showed that these two prefrontal areas have not yet reached full maturity in children. Taken together, this study presents the first findings that show activation of a highly specific neural network orchestrating the experience of presence in adult subjects, and that the absence of activity in this neural network might contribute to the generally increased susceptibility of children for the experience of presence in VEs.

No MeSH data available.


Related in: MedlinePlus