Limits...
Feeling present in arousing virtual reality worlds: prefrontal brain regions differentially orchestrate presence experience in adults and children.

Baumgartner T, Speck D, Wettstein D, Masnari O, Beeli G, Jäncke L - Front Hum Neurosci (2008)

Bottom Line: The experience of presence in adult subjects was found to be modulated by two major strategies involving two homologous prefrontal brain structures.In contrast, there was no evidence of these two strategies in children.In fact, anatomical analyses showed that these two prefrontal areas have not yet reached full maturity in children.

View Article: PubMed Central - PubMed

Affiliation: Institute of Psychology, Department of Neuropsychology, University of Zurich Switzerland. t.baumgartner@iew.uzh.ch

ABSTRACT
Virtual reality (VR) is a powerful tool for simulating aspects of the real world. The success of VR is thought to depend on its ability to evoke a sense of "being there", that is, the feeling of "Presence". In view of the rapid progress in the development of increasingly more sophisticated virtual environments (VE), the importance of understanding the neural underpinnings of presence is growing. To date however, the neural correlates of this phenomenon have received very scant attention. An fMRI-based study with 52 adults and 25 children was therefore conducted using a highly immersive VE. The experience of presence in adult subjects was found to be modulated by two major strategies involving two homologous prefrontal brain structures. Whereas the right DLPFC controlled the sense of presence by down-regulating the activation in the egocentric dorsal visual processing stream, the left DLPFC up-regulated widespread areas of the medial prefrontal cortex known to be involved in self-reflective and stimulus-independent thoughts. In contrast, there was no evidence of these two strategies in children. In fact, anatomical analyses showed that these two prefrontal areas have not yet reached full maturity in children. Taken together, this study presents the first findings that show activation of a highly specific neural network orchestrating the experience of presence in adult subjects, and that the absence of activity in this neural network might contribute to the generally increased susceptibility of children for the experience of presence in VEs.

No MeSH data available.


Related in: MedlinePlus

Experimental design and Presence rating. (A) Experimental paradigm. Different roller coaster scenarios were presented by means of MR-compatible goggles and earphones. Whereas in the High Presence condition the roller coaster ride consisted of spectacular ascending and descending sections and loops, in the Low Presence condition the roller coaster cart followed a winding but horizontal path. (B) Depicted is the mean ± S.E.M. in Presence rating on a 5-point scale, broken down for group (adults/children) and condition (High Presence/Low Presence). The scale measures the subjective impression of how much the subjects felt they were situated in the midst of the action of the roller coaster ride rather than merely observing it. Both adults and children clearly indicated an enhanced presence experience in the High compared to the Low Presence condition. (C) Similar distribution of presence ratings in adults and children, indicating that about 40% of subjects in each group reported a difference in presence rating of less than one between the High and Low Presence condition (referred to in the paper as low Presence rating group), whereas about 60% of subjects in each group reported a difference in the presence rating of higher than or equal to one (referred to as high Presence rating group).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2572200&req=5

Figure 1: Experimental design and Presence rating. (A) Experimental paradigm. Different roller coaster scenarios were presented by means of MR-compatible goggles and earphones. Whereas in the High Presence condition the roller coaster ride consisted of spectacular ascending and descending sections and loops, in the Low Presence condition the roller coaster cart followed a winding but horizontal path. (B) Depicted is the mean ± S.E.M. in Presence rating on a 5-point scale, broken down for group (adults/children) and condition (High Presence/Low Presence). The scale measures the subjective impression of how much the subjects felt they were situated in the midst of the action of the roller coaster ride rather than merely observing it. Both adults and children clearly indicated an enhanced presence experience in the High compared to the Low Presence condition. (C) Similar distribution of presence ratings in adults and children, indicating that about 40% of subjects in each group reported a difference in presence rating of less than one between the High and Low Presence condition (referred to in the paper as low Presence rating group), whereas about 60% of subjects in each group reported a difference in the presence rating of higher than or equal to one (referred to as high Presence rating group).

Mentions: In order to investigate the proposed impact of the prefrontal cortex on parietal regions and associated presence experience in the context of maturational differences, we conducted an fMRI-based study on a large sample of healthy adults (n = 52; 26 female; mean age = 26.2, S.D. = 4.1) and children (n = 25; 11 female; mean age = 8.7, S.D. = 1.6) exposed to two different variants of a virtual roller coaster scenario (Figure 1A). One scenario consisted of realistic roller coaster rides with spectacular ascending and descending sections and loops (referred to as High Presence condition), whereas in the other scenario the roller coaster cart followed the bending but horizontal path of the tracks (referred to as Low Presence condition). A recent study (Baumgartner et al., 2006b) has shown that these two scenarios evoke different presence experiences (both in terms of quality and intensity) as measured with a standard presence rating questionnaire (Vorderer et al., 2004). We used the same presence questionnaire in the current study, with a large subject pool in order to obtain strong variability in presence scores. These scores were then used in different brain imaging analyses, as regressors in across-subjects correlational analyses and grouping variables in within-subjects effective connectivity analyses (see below), in order to reveal the nature and extent of inter-individual differences in cerebral networks orchestrating the presence experience (1) in adults, (2) in children, and in particular (3) between adults and children.


Feeling present in arousing virtual reality worlds: prefrontal brain regions differentially orchestrate presence experience in adults and children.

Baumgartner T, Speck D, Wettstein D, Masnari O, Beeli G, Jäncke L - Front Hum Neurosci (2008)

Experimental design and Presence rating. (A) Experimental paradigm. Different roller coaster scenarios were presented by means of MR-compatible goggles and earphones. Whereas in the High Presence condition the roller coaster ride consisted of spectacular ascending and descending sections and loops, in the Low Presence condition the roller coaster cart followed a winding but horizontal path. (B) Depicted is the mean ± S.E.M. in Presence rating on a 5-point scale, broken down for group (adults/children) and condition (High Presence/Low Presence). The scale measures the subjective impression of how much the subjects felt they were situated in the midst of the action of the roller coaster ride rather than merely observing it. Both adults and children clearly indicated an enhanced presence experience in the High compared to the Low Presence condition. (C) Similar distribution of presence ratings in adults and children, indicating that about 40% of subjects in each group reported a difference in presence rating of less than one between the High and Low Presence condition (referred to in the paper as low Presence rating group), whereas about 60% of subjects in each group reported a difference in the presence rating of higher than or equal to one (referred to as high Presence rating group).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2572200&req=5

Figure 1: Experimental design and Presence rating. (A) Experimental paradigm. Different roller coaster scenarios were presented by means of MR-compatible goggles and earphones. Whereas in the High Presence condition the roller coaster ride consisted of spectacular ascending and descending sections and loops, in the Low Presence condition the roller coaster cart followed a winding but horizontal path. (B) Depicted is the mean ± S.E.M. in Presence rating on a 5-point scale, broken down for group (adults/children) and condition (High Presence/Low Presence). The scale measures the subjective impression of how much the subjects felt they were situated in the midst of the action of the roller coaster ride rather than merely observing it. Both adults and children clearly indicated an enhanced presence experience in the High compared to the Low Presence condition. (C) Similar distribution of presence ratings in adults and children, indicating that about 40% of subjects in each group reported a difference in presence rating of less than one between the High and Low Presence condition (referred to in the paper as low Presence rating group), whereas about 60% of subjects in each group reported a difference in the presence rating of higher than or equal to one (referred to as high Presence rating group).
Mentions: In order to investigate the proposed impact of the prefrontal cortex on parietal regions and associated presence experience in the context of maturational differences, we conducted an fMRI-based study on a large sample of healthy adults (n = 52; 26 female; mean age = 26.2, S.D. = 4.1) and children (n = 25; 11 female; mean age = 8.7, S.D. = 1.6) exposed to two different variants of a virtual roller coaster scenario (Figure 1A). One scenario consisted of realistic roller coaster rides with spectacular ascending and descending sections and loops (referred to as High Presence condition), whereas in the other scenario the roller coaster cart followed the bending but horizontal path of the tracks (referred to as Low Presence condition). A recent study (Baumgartner et al., 2006b) has shown that these two scenarios evoke different presence experiences (both in terms of quality and intensity) as measured with a standard presence rating questionnaire (Vorderer et al., 2004). We used the same presence questionnaire in the current study, with a large subject pool in order to obtain strong variability in presence scores. These scores were then used in different brain imaging analyses, as regressors in across-subjects correlational analyses and grouping variables in within-subjects effective connectivity analyses (see below), in order to reveal the nature and extent of inter-individual differences in cerebral networks orchestrating the presence experience (1) in adults, (2) in children, and in particular (3) between adults and children.

Bottom Line: The experience of presence in adult subjects was found to be modulated by two major strategies involving two homologous prefrontal brain structures.In contrast, there was no evidence of these two strategies in children.In fact, anatomical analyses showed that these two prefrontal areas have not yet reached full maturity in children.

View Article: PubMed Central - PubMed

Affiliation: Institute of Psychology, Department of Neuropsychology, University of Zurich Switzerland. t.baumgartner@iew.uzh.ch

ABSTRACT
Virtual reality (VR) is a powerful tool for simulating aspects of the real world. The success of VR is thought to depend on its ability to evoke a sense of "being there", that is, the feeling of "Presence". In view of the rapid progress in the development of increasingly more sophisticated virtual environments (VE), the importance of understanding the neural underpinnings of presence is growing. To date however, the neural correlates of this phenomenon have received very scant attention. An fMRI-based study with 52 adults and 25 children was therefore conducted using a highly immersive VE. The experience of presence in adult subjects was found to be modulated by two major strategies involving two homologous prefrontal brain structures. Whereas the right DLPFC controlled the sense of presence by down-regulating the activation in the egocentric dorsal visual processing stream, the left DLPFC up-regulated widespread areas of the medial prefrontal cortex known to be involved in self-reflective and stimulus-independent thoughts. In contrast, there was no evidence of these two strategies in children. In fact, anatomical analyses showed that these two prefrontal areas have not yet reached full maturity in children. Taken together, this study presents the first findings that show activation of a highly specific neural network orchestrating the experience of presence in adult subjects, and that the absence of activity in this neural network might contribute to the generally increased susceptibility of children for the experience of presence in VEs.

No MeSH data available.


Related in: MedlinePlus