Limits...
Anti cancer effects of curcumin: cycle of life and death.

Sa G, Das T - Cell Div (2008)

Bottom Line: Extensive research has addressed the chemotherapeutic potential of curcumin (diferuloylmethane), a relatively non-toxic plant derived polyphenol.The mechanisms implicated are diverse and appear to involve a combination of cell signaling pathways at multiple levels.The purpose of the current article is to present an appraisal of the current level of knowledge regarding the potential of curcumin as an agent for the chemoprevention of cancer via an understanding of its mechanism of action at the level of cell cycle regulation.

View Article: PubMed Central - HTML - PubMed

Affiliation: Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata, 700054, India. gauri@bic.boseinst.ernet.in.

ABSTRACT
Increasing knowledge on the cell cycle deregulations in cancers has promoted the introduction of phytochemicals, which can either modulate signaling pathways leading to cell cycle regulation or directly alter cell cycle regulatory molecules, in cancer therapy. Most human malignancies are driven by chromosomal translocations or other genetic alterations that directly affect the function of critical cell cycle proteins such as cyclins as well as tumor suppressors, e.g., p53. In this respect, cell cycle regulation and its modulation by curcumin are gaining widespread attention in recent years. Extensive research has addressed the chemotherapeutic potential of curcumin (diferuloylmethane), a relatively non-toxic plant derived polyphenol. The mechanisms implicated are diverse and appear to involve a combination of cell signaling pathways at multiple levels. In the present review we discuss how alterations in the cell cycle control contribute to the malignant transformation and provide an overview of how curcumin targets cell cycle regulatory molecules to assert anti-proliferative and/or apoptotic effects in cancer cells. The purpose of the current article is to present an appraisal of the current level of knowledge regarding the potential of curcumin as an agent for the chemoprevention of cancer via an understanding of its mechanism of action at the level of cell cycle regulation. Taken together, this review seeks to summarize the unique properties of curcumin that may be exploited for successful clinical cancer prevention.

No MeSH data available.


Related in: MedlinePlus

Curcuma longa Plant and chemical structure of curcumin, the active ingradient of rhizome termeric. The tautomerism of curcumin is demonstrated under different physiological conditions. Under acidic and neutral conditions, the bis-keto form (bottom) is more predominant than the enolate form.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2572158&req=5

Figure 3: Curcuma longa Plant and chemical structure of curcumin, the active ingradient of rhizome termeric. The tautomerism of curcumin is demonstrated under different physiological conditions. Under acidic and neutral conditions, the bis-keto form (bottom) is more predominant than the enolate form.

Mentions: Curcumin is a component of turmeric; the yellow spice derived from the roots (rhizomes) of the plant Curcuma longa. Curcuma longa is a short-stemmed perennial, which grows to about 100 cm in height. It has curved leaves and oblong, ovate or cylindrical rhizomes (Figure 3). Curcuma longa grows naturally throughout the Indian subcontinent and in tropical countries, particularly South East Asia. A traditional remedy in "Ayurvedic medicine" and ancient Indian healing system that dates back over 5,000 years, turmeric has been used through the ages as an "herbal aspirin" and "herbal cortisone" to relieve discomfort and inflammation associated with an extraordinary spectrum of infectious and autoimmune diseases [4].


Anti cancer effects of curcumin: cycle of life and death.

Sa G, Das T - Cell Div (2008)

Curcuma longa Plant and chemical structure of curcumin, the active ingradient of rhizome termeric. The tautomerism of curcumin is demonstrated under different physiological conditions. Under acidic and neutral conditions, the bis-keto form (bottom) is more predominant than the enolate form.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2572158&req=5

Figure 3: Curcuma longa Plant and chemical structure of curcumin, the active ingradient of rhizome termeric. The tautomerism of curcumin is demonstrated under different physiological conditions. Under acidic and neutral conditions, the bis-keto form (bottom) is more predominant than the enolate form.
Mentions: Curcumin is a component of turmeric; the yellow spice derived from the roots (rhizomes) of the plant Curcuma longa. Curcuma longa is a short-stemmed perennial, which grows to about 100 cm in height. It has curved leaves and oblong, ovate or cylindrical rhizomes (Figure 3). Curcuma longa grows naturally throughout the Indian subcontinent and in tropical countries, particularly South East Asia. A traditional remedy in "Ayurvedic medicine" and ancient Indian healing system that dates back over 5,000 years, turmeric has been used through the ages as an "herbal aspirin" and "herbal cortisone" to relieve discomfort and inflammation associated with an extraordinary spectrum of infectious and autoimmune diseases [4].

Bottom Line: Extensive research has addressed the chemotherapeutic potential of curcumin (diferuloylmethane), a relatively non-toxic plant derived polyphenol.The mechanisms implicated are diverse and appear to involve a combination of cell signaling pathways at multiple levels.The purpose of the current article is to present an appraisal of the current level of knowledge regarding the potential of curcumin as an agent for the chemoprevention of cancer via an understanding of its mechanism of action at the level of cell cycle regulation.

View Article: PubMed Central - HTML - PubMed

Affiliation: Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata, 700054, India. gauri@bic.boseinst.ernet.in.

ABSTRACT
Increasing knowledge on the cell cycle deregulations in cancers has promoted the introduction of phytochemicals, which can either modulate signaling pathways leading to cell cycle regulation or directly alter cell cycle regulatory molecules, in cancer therapy. Most human malignancies are driven by chromosomal translocations or other genetic alterations that directly affect the function of critical cell cycle proteins such as cyclins as well as tumor suppressors, e.g., p53. In this respect, cell cycle regulation and its modulation by curcumin are gaining widespread attention in recent years. Extensive research has addressed the chemotherapeutic potential of curcumin (diferuloylmethane), a relatively non-toxic plant derived polyphenol. The mechanisms implicated are diverse and appear to involve a combination of cell signaling pathways at multiple levels. In the present review we discuss how alterations in the cell cycle control contribute to the malignant transformation and provide an overview of how curcumin targets cell cycle regulatory molecules to assert anti-proliferative and/or apoptotic effects in cancer cells. The purpose of the current article is to present an appraisal of the current level of knowledge regarding the potential of curcumin as an agent for the chemoprevention of cancer via an understanding of its mechanism of action at the level of cell cycle regulation. Taken together, this review seeks to summarize the unique properties of curcumin that may be exploited for successful clinical cancer prevention.

No MeSH data available.


Related in: MedlinePlus