Limits...
A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus.

Willger SD, Puttikamonkul S, Kim KH, Burritt JB, Grahl N, Metzler LJ, Barbuch R, Bard M, Lawrence CB, Cramer RA - PLoS Pathog. (2008)

Bottom Line: At the site of microbial infections, the significant influx of immune effector cells and the necrosis of tissue by the invading pathogen generate hypoxic microenvironments in which both the pathogen and host cells must survive.Loss of SrbA results in a mutant strain of the fungus that is incapable of growth in a hypoxic environment and consequently incapable of causing disease in two distinct murine models of invasive pulmonary aspergillosis (IPA).Significantly, the SrbA mutant was highly susceptible to fluconazole and voriconazole.

View Article: PubMed Central - PubMed

Affiliation: Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT, USA.

ABSTRACT
At the site of microbial infections, the significant influx of immune effector cells and the necrosis of tissue by the invading pathogen generate hypoxic microenvironments in which both the pathogen and host cells must survive. Currently, whether hypoxia adaptation is an important virulence attribute of opportunistic pathogenic molds is unknown. Here we report the characterization of a sterol-regulatory element binding protein, SrbA, in the opportunistic pathogenic mold, Aspergillus fumigatus. Loss of SrbA results in a mutant strain of the fungus that is incapable of growth in a hypoxic environment and consequently incapable of causing disease in two distinct murine models of invasive pulmonary aspergillosis (IPA). Transcriptional profiling revealed 87 genes that are affected by loss of SrbA function. Annotation of these genes implicated SrbA in maintaining sterol biosynthesis and hyphal morphology. Further examination of the SrbA mutant consequently revealed that SrbA plays a critical role in ergosterol biosynthesis, resistance to the azole class of antifungal drugs, and in maintenance of cell polarity in A. fumigatus. Significantly, the SrbA mutant was highly susceptible to fluconazole and voriconazole. Thus, these findings present a new function of SREBP proteins in filamentous fungi, and demonstrate for the first time that hypoxia adaptation is likely an important virulence attribute of pathogenic molds.

Show MeSH

Related in: MedlinePlus

SrbA is required for hyphal growth under hypoxic conditions.1×106 conidia of CEA10, SDW1 = ΔsrbA, SDW2 = ΔsrbA+srbA were plated on GMM plates and incubated at 37°C under normoxic and hypoxic conditions. (A) The diameter of the colony was measured over 96 h every 24 h. Under normoxic conditions no significant difference in growth speed and colony size or morphology could be observed (P>0.01). (B) Under hypoxic conditions the wild type CEA10 and the reconstituted strain SDW2 showed comparable growth (P>0.01) but the mutant strain SDW1 did not demonstrate any detectable growth. Error bars represent standard error from the triplicate experiments.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2572145&req=5

ppat-1000200-g002: SrbA is required for hyphal growth under hypoxic conditions.1×106 conidia of CEA10, SDW1 = ΔsrbA, SDW2 = ΔsrbA+srbA were plated on GMM plates and incubated at 37°C under normoxic and hypoxic conditions. (A) The diameter of the colony was measured over 96 h every 24 h. Under normoxic conditions no significant difference in growth speed and colony size or morphology could be observed (P>0.01). (B) Under hypoxic conditions the wild type CEA10 and the reconstituted strain SDW2 showed comparable growth (P>0.01) but the mutant strain SDW1 did not demonstrate any detectable growth. Error bars represent standard error from the triplicate experiments.

Mentions: To determine whether SrbA is involved in hypoxia adaptation and fungal virulence in filamentous fungi, we generated a mutant of the gene encoding SrbA by replacement of the srbA coding sequence in A. fumigatus strain CEA17 with the auxotrophic marker pyrG from A. parasiticus as previously described [41],[42] (Figure 1). The resulting ΔsrbA strain was named SDW1. Ectopic re-introduction of the wild type srbA allele into SDW1 (resulting in strain SDW2) allowed us to attribute all resulting phenotypes specifically to the absence of srbA in SDW1. All strains were rigorously confirmed with Southern blot (Figure 1) and PCR analyses (data not shown). The re-introduced srbA allele in SDW2 displayed similar mRNA abundance in response to hypoxia as the srbA allele in the wild type strain (data not shown). SDW1 and SDW2 both displayed normal hyphal growth rates compared to the wild type strain CEA10 in normoxic conditions on glucose minimal medium (GMM) (Figure 2A) (P>0.01). However, no hyphal growth of SDW1 was observed in hypoxic (1% O2, 5% CO2, 94% N2) conditions whereas wild type strain CEA10 and reconstituted strain SDW2 grew at a normal rate with visual phenotypic differences in colony color and conidiation compared to growth in normoxia (Figure 2A and 2B). In hypoxia, the wild type strains displayed increased aerial hyphae, decreased conidia production, and consequently exhibited a fluffy colony morphology (Figure 2B). After 96 hours of incubation in hypoxia, SDW1 continued to display undetectable growth. However, upon transfer back to normoxic conditions, wild type growth rate was restored (data not shown). Addition of exogenous ergosterol or lanosterol did not rescue the SDW1 growth defect or alter wild type growth morphology in hypoxia (data not shown). These results indicate that A. fumigatus can rapidly adapt to hypoxic microenvironments, and that SrbA in A. fumigatus is involved in mediating this response by an undefined mechanism.


A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus.

Willger SD, Puttikamonkul S, Kim KH, Burritt JB, Grahl N, Metzler LJ, Barbuch R, Bard M, Lawrence CB, Cramer RA - PLoS Pathog. (2008)

SrbA is required for hyphal growth under hypoxic conditions.1×106 conidia of CEA10, SDW1 = ΔsrbA, SDW2 = ΔsrbA+srbA were plated on GMM plates and incubated at 37°C under normoxic and hypoxic conditions. (A) The diameter of the colony was measured over 96 h every 24 h. Under normoxic conditions no significant difference in growth speed and colony size or morphology could be observed (P>0.01). (B) Under hypoxic conditions the wild type CEA10 and the reconstituted strain SDW2 showed comparable growth (P>0.01) but the mutant strain SDW1 did not demonstrate any detectable growth. Error bars represent standard error from the triplicate experiments.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2572145&req=5

ppat-1000200-g002: SrbA is required for hyphal growth under hypoxic conditions.1×106 conidia of CEA10, SDW1 = ΔsrbA, SDW2 = ΔsrbA+srbA were plated on GMM plates and incubated at 37°C under normoxic and hypoxic conditions. (A) The diameter of the colony was measured over 96 h every 24 h. Under normoxic conditions no significant difference in growth speed and colony size or morphology could be observed (P>0.01). (B) Under hypoxic conditions the wild type CEA10 and the reconstituted strain SDW2 showed comparable growth (P>0.01) but the mutant strain SDW1 did not demonstrate any detectable growth. Error bars represent standard error from the triplicate experiments.
Mentions: To determine whether SrbA is involved in hypoxia adaptation and fungal virulence in filamentous fungi, we generated a mutant of the gene encoding SrbA by replacement of the srbA coding sequence in A. fumigatus strain CEA17 with the auxotrophic marker pyrG from A. parasiticus as previously described [41],[42] (Figure 1). The resulting ΔsrbA strain was named SDW1. Ectopic re-introduction of the wild type srbA allele into SDW1 (resulting in strain SDW2) allowed us to attribute all resulting phenotypes specifically to the absence of srbA in SDW1. All strains were rigorously confirmed with Southern blot (Figure 1) and PCR analyses (data not shown). The re-introduced srbA allele in SDW2 displayed similar mRNA abundance in response to hypoxia as the srbA allele in the wild type strain (data not shown). SDW1 and SDW2 both displayed normal hyphal growth rates compared to the wild type strain CEA10 in normoxic conditions on glucose minimal medium (GMM) (Figure 2A) (P>0.01). However, no hyphal growth of SDW1 was observed in hypoxic (1% O2, 5% CO2, 94% N2) conditions whereas wild type strain CEA10 and reconstituted strain SDW2 grew at a normal rate with visual phenotypic differences in colony color and conidiation compared to growth in normoxia (Figure 2A and 2B). In hypoxia, the wild type strains displayed increased aerial hyphae, decreased conidia production, and consequently exhibited a fluffy colony morphology (Figure 2B). After 96 hours of incubation in hypoxia, SDW1 continued to display undetectable growth. However, upon transfer back to normoxic conditions, wild type growth rate was restored (data not shown). Addition of exogenous ergosterol or lanosterol did not rescue the SDW1 growth defect or alter wild type growth morphology in hypoxia (data not shown). These results indicate that A. fumigatus can rapidly adapt to hypoxic microenvironments, and that SrbA in A. fumigatus is involved in mediating this response by an undefined mechanism.

Bottom Line: At the site of microbial infections, the significant influx of immune effector cells and the necrosis of tissue by the invading pathogen generate hypoxic microenvironments in which both the pathogen and host cells must survive.Loss of SrbA results in a mutant strain of the fungus that is incapable of growth in a hypoxic environment and consequently incapable of causing disease in two distinct murine models of invasive pulmonary aspergillosis (IPA).Significantly, the SrbA mutant was highly susceptible to fluconazole and voriconazole.

View Article: PubMed Central - PubMed

Affiliation: Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT, USA.

ABSTRACT
At the site of microbial infections, the significant influx of immune effector cells and the necrosis of tissue by the invading pathogen generate hypoxic microenvironments in which both the pathogen and host cells must survive. Currently, whether hypoxia adaptation is an important virulence attribute of opportunistic pathogenic molds is unknown. Here we report the characterization of a sterol-regulatory element binding protein, SrbA, in the opportunistic pathogenic mold, Aspergillus fumigatus. Loss of SrbA results in a mutant strain of the fungus that is incapable of growth in a hypoxic environment and consequently incapable of causing disease in two distinct murine models of invasive pulmonary aspergillosis (IPA). Transcriptional profiling revealed 87 genes that are affected by loss of SrbA function. Annotation of these genes implicated SrbA in maintaining sterol biosynthesis and hyphal morphology. Further examination of the SrbA mutant consequently revealed that SrbA plays a critical role in ergosterol biosynthesis, resistance to the azole class of antifungal drugs, and in maintenance of cell polarity in A. fumigatus. Significantly, the SrbA mutant was highly susceptible to fluconazole and voriconazole. Thus, these findings present a new function of SREBP proteins in filamentous fungi, and demonstrate for the first time that hypoxia adaptation is likely an important virulence attribute of pathogenic molds.

Show MeSH
Related in: MedlinePlus