An enhanced partial order curve comparison algorithm and its application to analyzing protein folding trajectories.
Bottom Line:
Current computation power enables researchers to produce a huge amount of folding simulation data.Hence there is a pressing need to be able to interpret and identify novel folding features from them.We demonstrate its generality and effectiveness by applying it to aligning multiple protein structures with low similarities.
Affiliation: Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA. sun.82@osu.edu
ABSTRACT
Show MeSH
Background: Understanding how proteins fold is essential to our quest in discovering how life works at the molecular level. Current computation power enables researchers to produce a huge amount of folding simulation data. Hence there is a pressing need to be able to interpret and identify novel folding features from them. Results: In this paper, we model each folding trajectory as a multi-dimensional curve. We then develop an effective multiple curve comparison (MCC) algorithm, called the enhanced partial order (EPO) algorithm, to extract features from a set of diverse folding trajectories, including both successful and unsuccessful simulation runs. The EPO algorithm addresses several new challenges presented by comparing high dimensional curves coming from folding trajectories. A detailed case study on miniprotein Trp-cage 1 demonstrates that our algorithm can detect similarities at rather low level, and extract biologically meaningful folding events. Conclusion: The EPO algorithm is general and applicable to a wide range of applications. We demonstrate its generality and effectiveness by applying it to aligning multiple protein structures with low similarities. For user's convenience, we provide a web server for the algorithm at http://db.cse.ohio-state.edu/EPO. |
Related In:
Results -
Collection
License getmorefigures.php?uid=PMC2571979&req=5
Mentions: (C1) indicates that the number of vertices of input curves aligned to each aligned node ok is greater than a size threshold τ . (C2) means that these aligned points are tightly clustered together (i.e, the diameter of them is bounded by a distance threshold ε). (C3) enforces that points in different aligned nodes still maintain their partial order along their respective trajectory, which means that oks are inherited and thus consistent to the points in each trajectory. Our goal is to maximize L, the size of such an alignment . See Figure 6(b) for an example of an alignment graph. |
View Article: PubMed Central - HTML - PubMed
Affiliation: Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA. sun.82@osu.edu
Background: Understanding how proteins fold is essential to our quest in discovering how life works at the molecular level. Current computation power enables researchers to produce a huge amount of folding simulation data. Hence there is a pressing need to be able to interpret and identify novel folding features from them.
Results: In this paper, we model each folding trajectory as a multi-dimensional curve. We then develop an effective multiple curve comparison (MCC) algorithm, called the enhanced partial order (EPO) algorithm, to extract features from a set of diverse folding trajectories, including both successful and unsuccessful simulation runs. The EPO algorithm addresses several new challenges presented by comparing high dimensional curves coming from folding trajectories. A detailed case study on miniprotein Trp-cage 1 demonstrates that our algorithm can detect similarities at rather low level, and extract biologically meaningful folding events.
Conclusion: The EPO algorithm is general and applicable to a wide range of applications. We demonstrate its generality and effectiveness by applying it to aligning multiple protein structures with low similarities. For user's convenience, we provide a web server for the algorithm at http://db.cse.ohio-state.edu/EPO.