Limits...
Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells.

Wang CY, Staniforth V, Chiao MT, Hou CC, Wu HM, Yeh KC, Chen CH, Hwang PI, Wen TN, Shyur LF, Yang NS - BMC Genomics (2008)

Bottom Line: Bioinformatics analysis of genes expressed in [BF/S+L/Ep]-treated DCs revealed a key-signaling network involving a number of immune-modulatory molecules leading to the activation of a downstream molecule, adenylate cyclase 8.Proteomic analysis showed increased expression of antioxidant and cytoskeletal proteins after treatment with [BF/S+L/Ep] and cichoric acid.This study provides information on candidate target molecules and molecular signaling mechanisms for future systematic research into the immune-modulatory activities of an important traditional medicinal herb and its derived phytocompounds.

View Article: PubMed Central - HTML - PubMed

Affiliation: Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan. sally@mail.biowell.com.tw

ABSTRACT

Background: Echinacea spp. extracts and the derived phytocompounds have been shown to induce specific immune cell activities and are popularly used as food supplements or nutraceuticals for immuno-modulatory functions. Dendritic cells (DCs), the most potent antigen presenting cells, play an important role in both innate and adaptive immunities. In this study, we investigated the specific and differential gene expression in human immature DCs (iDCs) in response to treatment with a butanol fraction containing defined bioactive phytocompounds extracted from stems and leaves of Echinacea purpurea, that we denoted [BF/S+L/Ep].

Results: Affymetrix DNA microarray results showed significant up regulation of specific genes for cytokines (IL-8, IL-1beta, and IL-18) and chemokines (CXCL 2, CCL 5, and CCL 2) within 4 h after [BF/S+L/Ep] treatment of iDCs. Bioinformatics analysis of genes expressed in [BF/S+L/Ep]-treated DCs revealed a key-signaling network involving a number of immune-modulatory molecules leading to the activation of a downstream molecule, adenylate cyclase 8. Proteomic analysis showed increased expression of antioxidant and cytoskeletal proteins after treatment with [BF/S+L/Ep] and cichoric acid.

Conclusion: This study provides information on candidate target molecules and molecular signaling mechanisms for future systematic research into the immune-modulatory activities of an important traditional medicinal herb and its derived phytocompounds.

Show MeSH

Related in: MedlinePlus

Bioinformatics analysis of candidate molecular signaling networks of genes differentially expressed in [BF/S+L/Ep]-treated iDCs. The TRANSPATH Professional 7.1 database was searched to assess the possible signaling pathways, networks or potential interactions among the responsive genes/target molecules in iDCs treated with [BF/S+L/Ep]. The 20 genes that were up- or down-regulated at least 5-fold over controls were analyzed. Specifically, connections (hits) within 7 genes were employed as the parameter for the current search. Two postulated key molecules/pathways, Adenylate cyclase (AC8) and calmudulin (CaM), responsive to [BF/S+L/Ep] treatment were indicated indicated by thick and thin arrows, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2571112&req=5

Figure 4: Bioinformatics analysis of candidate molecular signaling networks of genes differentially expressed in [BF/S+L/Ep]-treated iDCs. The TRANSPATH Professional 7.1 database was searched to assess the possible signaling pathways, networks or potential interactions among the responsive genes/target molecules in iDCs treated with [BF/S+L/Ep]. The 20 genes that were up- or down-regulated at least 5-fold over controls were analyzed. Specifically, connections (hits) within 7 genes were employed as the parameter for the current search. Two postulated key molecules/pathways, Adenylate cyclase (AC8) and calmudulin (CaM), responsive to [BF/S+L/Ep] treatment were indicated indicated by thick and thin arrows, respectively.

Mentions: To identify the possible putative signal transduction pathways, we analyzed, for 4 hr and 24 hr treatments, the top 20 up-regulated genes in human iDCs in response to treatment with [BF/S+L/Ep] using TRANSPATH soft ware. Signal transduction pathways involving the MCP-1, IL-8, CCL5, JAK2 and TRIO genes with ≥ 5-fold change in expression on treatment (Table 1A) was identified. Signaling pathway networking and gene function analyses led to the hypothesis that treatment of iDC with [BF/S+L/Ep] may activate the cyclic AMP and PKC pathways leading to the regulation of a key down stream molecule, adenylate cyclase 8 (AC8), in a Ca2+ dependent manner (Figure 4).


Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells.

Wang CY, Staniforth V, Chiao MT, Hou CC, Wu HM, Yeh KC, Chen CH, Hwang PI, Wen TN, Shyur LF, Yang NS - BMC Genomics (2008)

Bioinformatics analysis of candidate molecular signaling networks of genes differentially expressed in [BF/S+L/Ep]-treated iDCs. The TRANSPATH Professional 7.1 database was searched to assess the possible signaling pathways, networks or potential interactions among the responsive genes/target molecules in iDCs treated with [BF/S+L/Ep]. The 20 genes that were up- or down-regulated at least 5-fold over controls were analyzed. Specifically, connections (hits) within 7 genes were employed as the parameter for the current search. Two postulated key molecules/pathways, Adenylate cyclase (AC8) and calmudulin (CaM), responsive to [BF/S+L/Ep] treatment were indicated indicated by thick and thin arrows, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2571112&req=5

Figure 4: Bioinformatics analysis of candidate molecular signaling networks of genes differentially expressed in [BF/S+L/Ep]-treated iDCs. The TRANSPATH Professional 7.1 database was searched to assess the possible signaling pathways, networks or potential interactions among the responsive genes/target molecules in iDCs treated with [BF/S+L/Ep]. The 20 genes that were up- or down-regulated at least 5-fold over controls were analyzed. Specifically, connections (hits) within 7 genes were employed as the parameter for the current search. Two postulated key molecules/pathways, Adenylate cyclase (AC8) and calmudulin (CaM), responsive to [BF/S+L/Ep] treatment were indicated indicated by thick and thin arrows, respectively.
Mentions: To identify the possible putative signal transduction pathways, we analyzed, for 4 hr and 24 hr treatments, the top 20 up-regulated genes in human iDCs in response to treatment with [BF/S+L/Ep] using TRANSPATH soft ware. Signal transduction pathways involving the MCP-1, IL-8, CCL5, JAK2 and TRIO genes with ≥ 5-fold change in expression on treatment (Table 1A) was identified. Signaling pathway networking and gene function analyses led to the hypothesis that treatment of iDC with [BF/S+L/Ep] may activate the cyclic AMP and PKC pathways leading to the regulation of a key down stream molecule, adenylate cyclase 8 (AC8), in a Ca2+ dependent manner (Figure 4).

Bottom Line: Bioinformatics analysis of genes expressed in [BF/S+L/Ep]-treated DCs revealed a key-signaling network involving a number of immune-modulatory molecules leading to the activation of a downstream molecule, adenylate cyclase 8.Proteomic analysis showed increased expression of antioxidant and cytoskeletal proteins after treatment with [BF/S+L/Ep] and cichoric acid.This study provides information on candidate target molecules and molecular signaling mechanisms for future systematic research into the immune-modulatory activities of an important traditional medicinal herb and its derived phytocompounds.

View Article: PubMed Central - HTML - PubMed

Affiliation: Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan. sally@mail.biowell.com.tw

ABSTRACT

Background: Echinacea spp. extracts and the derived phytocompounds have been shown to induce specific immune cell activities and are popularly used as food supplements or nutraceuticals for immuno-modulatory functions. Dendritic cells (DCs), the most potent antigen presenting cells, play an important role in both innate and adaptive immunities. In this study, we investigated the specific and differential gene expression in human immature DCs (iDCs) in response to treatment with a butanol fraction containing defined bioactive phytocompounds extracted from stems and leaves of Echinacea purpurea, that we denoted [BF/S+L/Ep].

Results: Affymetrix DNA microarray results showed significant up regulation of specific genes for cytokines (IL-8, IL-1beta, and IL-18) and chemokines (CXCL 2, CCL 5, and CCL 2) within 4 h after [BF/S+L/Ep] treatment of iDCs. Bioinformatics analysis of genes expressed in [BF/S+L/Ep]-treated DCs revealed a key-signaling network involving a number of immune-modulatory molecules leading to the activation of a downstream molecule, adenylate cyclase 8. Proteomic analysis showed increased expression of antioxidant and cytoskeletal proteins after treatment with [BF/S+L/Ep] and cichoric acid.

Conclusion: This study provides information on candidate target molecules and molecular signaling mechanisms for future systematic research into the immune-modulatory activities of an important traditional medicinal herb and its derived phytocompounds.

Show MeSH
Related in: MedlinePlus