Limits...
Rapid typing of transmissible spongiform encephalopathy strains with differential ELISA.

Simon S, Nugier J, Morel N, Boutal H, Créminon C, Benestad SL, Andréoletti O, Lantier F, Bilheude JM, Feyssaguet M, Biacabe AG, Baron T, Grassi J - Emerging Infect. Dis. (2008)

Bottom Line: Based on the particular biochemical properties of the abnormal prion protein (PrPsc) associated with BSE, and particularly the increased degradation induced by proteinase K in the N terminal part of PrPsc, we have developed a rapid ELISA designed to distinguish BSE from other scrapie strains.This assay clearly discriminates experimental ovine BSE from other scrapie strains and was used to screen 260 transmissible spongiform encephalopathy (TSE)-infected small ruminant samples identified by the French active surveillance network (2002/2003).In this context, this test has helped to identify the first case of natural BSE in a goat and can be used to classify TSE isolates based on the proteinase K sensitivity of PrPsc.

View Article: PubMed Central - PubMed

Affiliation: Commissariat à l'Energie Atomique, Gif-sur-Yvette, France.

ABSTRACT
The bovine spongiform encephalopathy (BSE) agent has been transmitted to humans, leading to variant Creutzfeldt-Jakob disease. Sheep and goats can be experimentally infected by BSE and have been potentially exposed to natural BSE; however, whether BSE can be transmitted to small ruminants is not known. Based on the particular biochemical properties of the abnormal prion protein (PrPsc) associated with BSE, and particularly the increased degradation induced by proteinase K in the N terminal part of PrPsc, we have developed a rapid ELISA designed to distinguish BSE from other scrapie strains. This assay clearly discriminates experimental ovine BSE from other scrapie strains and was used to screen 260 transmissible spongiform encephalopathy (TSE)-infected small ruminant samples identified by the French active surveillance network (2002/2003). In this context, this test has helped to identify the first case of natural BSE in a goat and can be used to classify TSE isolates based on the proteinase K sensitivity of PrPsc.

Show MeSH

Related in: MedlinePlus

Analysis of different ovine strains by ELISA typing test and immunoblot. A) ELISA typing test. Three Nor98 isolates (Fiksdal, Stranda, and Seim) were analyzed by using the ELISA typing test. Absorbances obtained in the classic A′typing reagent are close to 0, preventing calculation of the A/A′ratio. Ratios obtained for a Norwegian scrapie isolate (Lavik) and for the 3 internal controls (classic Scr 99–1316, intermediate scrapie PG1259, and experimental ovine bovine spongiform encephalopathy [BSE] 397 BS) are indicated. B) Pattern of migration of different ovine strains. Lanes 1 and 9, untreated negative brain homogenate. Lanes 2–8, proteinase K–treated brain homogenates: French scrapie isolate 99–1316 (lane 2); experimental ovine BSE 397 BS (lanes 3 and 8); Norwegian scrapie isolate (Lavik) (lane 4); Nor98 Stranda and Nor98 Seim scrapie isolates (lanes 5 and 6, respectively); negative brain homogenate (lane 7). MW, molecular weight.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2570920&req=5

Figure 5: Analysis of different ovine strains by ELISA typing test and immunoblot. A) ELISA typing test. Three Nor98 isolates (Fiksdal, Stranda, and Seim) were analyzed by using the ELISA typing test. Absorbances obtained in the classic A′typing reagent are close to 0, preventing calculation of the A/A′ratio. Ratios obtained for a Norwegian scrapie isolate (Lavik) and for the 3 internal controls (classic Scr 99–1316, intermediate scrapie PG1259, and experimental ovine bovine spongiform encephalopathy [BSE] 397 BS) are indicated. B) Pattern of migration of different ovine strains. Lanes 1 and 9, untreated negative brain homogenate. Lanes 2–8, proteinase K–treated brain homogenates: French scrapie isolate 99–1316 (lane 2); experimental ovine BSE 397 BS (lanes 3 and 8); Norwegian scrapie isolate (Lavik) (lane 4); Nor98 Stranda and Nor98 Seim scrapie isolates (lanes 5 and 6, respectively); negative brain homogenate (lane 7). MW, molecular weight.

Mentions: The typing test was used to analyze 18 sheep isolates from Norway (Table 3). Ratios were almost impossible to calculate because of the large decrease in signal in A′conditions, as shown in Figure 5, panel A for 3 isolates. Only 1 sample (Lavik) showed characteristics of a conventional scrapie isolate, providing an A/A′ratio of 0.84 (Figure 5, panel A), a normalized ratio of 0.11, and a Western blot profile close to that of a French scrapie isolate (Figure 4, panel B, lanes 3 and 9; Figure 5, panel B, lanes 2 and 4). Other samples had a pattern that included a 12-kDa band (Figure 5, panel B) (19,22,34), characteristic of the Nor-98 strain.


Rapid typing of transmissible spongiform encephalopathy strains with differential ELISA.

Simon S, Nugier J, Morel N, Boutal H, Créminon C, Benestad SL, Andréoletti O, Lantier F, Bilheude JM, Feyssaguet M, Biacabe AG, Baron T, Grassi J - Emerging Infect. Dis. (2008)

Analysis of different ovine strains by ELISA typing test and immunoblot. A) ELISA typing test. Three Nor98 isolates (Fiksdal, Stranda, and Seim) were analyzed by using the ELISA typing test. Absorbances obtained in the classic A′typing reagent are close to 0, preventing calculation of the A/A′ratio. Ratios obtained for a Norwegian scrapie isolate (Lavik) and for the 3 internal controls (classic Scr 99–1316, intermediate scrapie PG1259, and experimental ovine bovine spongiform encephalopathy [BSE] 397 BS) are indicated. B) Pattern of migration of different ovine strains. Lanes 1 and 9, untreated negative brain homogenate. Lanes 2–8, proteinase K–treated brain homogenates: French scrapie isolate 99–1316 (lane 2); experimental ovine BSE 397 BS (lanes 3 and 8); Norwegian scrapie isolate (Lavik) (lane 4); Nor98 Stranda and Nor98 Seim scrapie isolates (lanes 5 and 6, respectively); negative brain homogenate (lane 7). MW, molecular weight.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2570920&req=5

Figure 5: Analysis of different ovine strains by ELISA typing test and immunoblot. A) ELISA typing test. Three Nor98 isolates (Fiksdal, Stranda, and Seim) were analyzed by using the ELISA typing test. Absorbances obtained in the classic A′typing reagent are close to 0, preventing calculation of the A/A′ratio. Ratios obtained for a Norwegian scrapie isolate (Lavik) and for the 3 internal controls (classic Scr 99–1316, intermediate scrapie PG1259, and experimental ovine bovine spongiform encephalopathy [BSE] 397 BS) are indicated. B) Pattern of migration of different ovine strains. Lanes 1 and 9, untreated negative brain homogenate. Lanes 2–8, proteinase K–treated brain homogenates: French scrapie isolate 99–1316 (lane 2); experimental ovine BSE 397 BS (lanes 3 and 8); Norwegian scrapie isolate (Lavik) (lane 4); Nor98 Stranda and Nor98 Seim scrapie isolates (lanes 5 and 6, respectively); negative brain homogenate (lane 7). MW, molecular weight.
Mentions: The typing test was used to analyze 18 sheep isolates from Norway (Table 3). Ratios were almost impossible to calculate because of the large decrease in signal in A′conditions, as shown in Figure 5, panel A for 3 isolates. Only 1 sample (Lavik) showed characteristics of a conventional scrapie isolate, providing an A/A′ratio of 0.84 (Figure 5, panel A), a normalized ratio of 0.11, and a Western blot profile close to that of a French scrapie isolate (Figure 4, panel B, lanes 3 and 9; Figure 5, panel B, lanes 2 and 4). Other samples had a pattern that included a 12-kDa band (Figure 5, panel B) (19,22,34), characteristic of the Nor-98 strain.

Bottom Line: Based on the particular biochemical properties of the abnormal prion protein (PrPsc) associated with BSE, and particularly the increased degradation induced by proteinase K in the N terminal part of PrPsc, we have developed a rapid ELISA designed to distinguish BSE from other scrapie strains.This assay clearly discriminates experimental ovine BSE from other scrapie strains and was used to screen 260 transmissible spongiform encephalopathy (TSE)-infected small ruminant samples identified by the French active surveillance network (2002/2003).In this context, this test has helped to identify the first case of natural BSE in a goat and can be used to classify TSE isolates based on the proteinase K sensitivity of PrPsc.

View Article: PubMed Central - PubMed

Affiliation: Commissariat à l'Energie Atomique, Gif-sur-Yvette, France.

ABSTRACT
The bovine spongiform encephalopathy (BSE) agent has been transmitted to humans, leading to variant Creutzfeldt-Jakob disease. Sheep and goats can be experimentally infected by BSE and have been potentially exposed to natural BSE; however, whether BSE can be transmitted to small ruminants is not known. Based on the particular biochemical properties of the abnormal prion protein (PrPsc) associated with BSE, and particularly the increased degradation induced by proteinase K in the N terminal part of PrPsc, we have developed a rapid ELISA designed to distinguish BSE from other scrapie strains. This assay clearly discriminates experimental ovine BSE from other scrapie strains and was used to screen 260 transmissible spongiform encephalopathy (TSE)-infected small ruminant samples identified by the French active surveillance network (2002/2003). In this context, this test has helped to identify the first case of natural BSE in a goat and can be used to classify TSE isolates based on the proteinase K sensitivity of PrPsc.

Show MeSH
Related in: MedlinePlus