Limits...
Diversity of the gut microbiota and eczema in early life.

Forno E, Onderdonk AB, McCracken J, Litonjua AA, Laskey D, Delaney ML, Dubois AM, Gold DR, Ryan LM, Weiss ST, Celedón JC - Clin Mol Allergy (2008)

Bottom Line: Fecal samples were collected from 21 infants at 1 and 4 months of life.Control subjects had significantly greater fecal microbial diversity than children with eczema at ages 1 (mean H' for controls = 0.75 vs. 0.53 for cases, P = 0.01) and 4 months (mean H' for controls = 0.92 vs. 0.59 for cases, P = 0.02).Our findings suggest that reduced microbial diversity is associated with the development of eczema in early life.

View Article: PubMed Central - HTML - PubMed

Affiliation: Channing Laboratory Boston, MA, USA. juan.celedon@channing.harvard.edu.

ABSTRACT

Background: A modest number of prospective studies of the composition of the intestinal microbiota and eczema in early life have yielded conflicting results.

Objective: To examine the relationship between the bacterial diversity of the gut and the development of eczema in early life by methods other than stool culture.

Methods: Fecal samples were collected from 21 infants at 1 and 4 months of life. Nine infants were diagnosed with eczema by the age of 6 months (cases) and 12 infants were not (controls). After conducting denaturating gradient gel electrophoresis (DGGE) of stool samples, we compared the microbial diversity of cases and controls using the number of electrophoretic bands and the Shannon index of diversity (H') as indicators.

Results: Control subjects had significantly greater fecal microbial diversity than children with eczema at ages 1 (mean H' for controls = 0.75 vs. 0.53 for cases, P = 0.01) and 4 months (mean H' for controls = 0.92 vs. 0.59 for cases, P = 0.02). The increase in diversity from 1 to 4 months of age was significant in controls (P = 0.04) but not in children who developed eczema by 6 months of age (P = 0.32).

Conclusion: Our findings suggest that reduced microbial diversity is associated with the development of eczema in early life.

No MeSH data available.


Related in: MedlinePlus

Predictions from mixed effects linear regression models. (Note: cases in red; controls in black). Number of bands: The increase in the number of bands tends to be more substantial in controls (p = 0.09) than in cases (p = 0.87); by age 4 months, controls have on average 2.6 bands more than cases. Shannon index: H' increases significantly in controls (p = 0.04) but not in cases (p = 0.32); at 1 month of age the index for controls is 0.22 higher, and at 4 months it is 0.33 higher. (*p < 0.05; see Table 1).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC2562383&req=5

Figure 4: Predictions from mixed effects linear regression models. (Note: cases in red; controls in black). Number of bands: The increase in the number of bands tends to be more substantial in controls (p = 0.09) than in cases (p = 0.87); by age 4 months, controls have on average 2.6 bands more than cases. Shannon index: H' increases significantly in controls (p = 0.04) but not in cases (p = 0.32); at 1 month of age the index for controls is 0.22 higher, and at 4 months it is 0.33 higher. (*p < 0.05; see Table 1).

Mentions: Mixed effects linear regression modeling was used to directly evaluate the behavior of bacterial diversity over time, with an interaction term included to assess whether the effect of time differed between cases and controls. Both models are illustrated in Figure 4. For the number of bands, there was no difference between cases and controls at 1 month of age. Controls acquired an average of 1.3 bands from age 1 month to age 4 months (p = 0.09), whereas cases only increased by 0.1 bands (p = 0.87); this resulted in a significant difference by age 4 months, with controls having on average 2.6 more bands than cases (p = 0.04). For the Shannon index model, controls had a significantly higher diversity than cases at 1 and 4 months of age, as previously described. During that period, H' increased an average of 0.11 among controls (p = 0.04), whereas the increase among cases was not significant (p = 0.32).


Diversity of the gut microbiota and eczema in early life.

Forno E, Onderdonk AB, McCracken J, Litonjua AA, Laskey D, Delaney ML, Dubois AM, Gold DR, Ryan LM, Weiss ST, Celedón JC - Clin Mol Allergy (2008)

Predictions from mixed effects linear regression models. (Note: cases in red; controls in black). Number of bands: The increase in the number of bands tends to be more substantial in controls (p = 0.09) than in cases (p = 0.87); by age 4 months, controls have on average 2.6 bands more than cases. Shannon index: H' increases significantly in controls (p = 0.04) but not in cases (p = 0.32); at 1 month of age the index for controls is 0.22 higher, and at 4 months it is 0.33 higher. (*p < 0.05; see Table 1).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC2562383&req=5

Figure 4: Predictions from mixed effects linear regression models. (Note: cases in red; controls in black). Number of bands: The increase in the number of bands tends to be more substantial in controls (p = 0.09) than in cases (p = 0.87); by age 4 months, controls have on average 2.6 bands more than cases. Shannon index: H' increases significantly in controls (p = 0.04) but not in cases (p = 0.32); at 1 month of age the index for controls is 0.22 higher, and at 4 months it is 0.33 higher. (*p < 0.05; see Table 1).
Mentions: Mixed effects linear regression modeling was used to directly evaluate the behavior of bacterial diversity over time, with an interaction term included to assess whether the effect of time differed between cases and controls. Both models are illustrated in Figure 4. For the number of bands, there was no difference between cases and controls at 1 month of age. Controls acquired an average of 1.3 bands from age 1 month to age 4 months (p = 0.09), whereas cases only increased by 0.1 bands (p = 0.87); this resulted in a significant difference by age 4 months, with controls having on average 2.6 more bands than cases (p = 0.04). For the Shannon index model, controls had a significantly higher diversity than cases at 1 and 4 months of age, as previously described. During that period, H' increased an average of 0.11 among controls (p = 0.04), whereas the increase among cases was not significant (p = 0.32).

Bottom Line: Fecal samples were collected from 21 infants at 1 and 4 months of life.Control subjects had significantly greater fecal microbial diversity than children with eczema at ages 1 (mean H' for controls = 0.75 vs. 0.53 for cases, P = 0.01) and 4 months (mean H' for controls = 0.92 vs. 0.59 for cases, P = 0.02).Our findings suggest that reduced microbial diversity is associated with the development of eczema in early life.

View Article: PubMed Central - HTML - PubMed

Affiliation: Channing Laboratory Boston, MA, USA. juan.celedon@channing.harvard.edu.

ABSTRACT

Background: A modest number of prospective studies of the composition of the intestinal microbiota and eczema in early life have yielded conflicting results.

Objective: To examine the relationship between the bacterial diversity of the gut and the development of eczema in early life by methods other than stool culture.

Methods: Fecal samples were collected from 21 infants at 1 and 4 months of life. Nine infants were diagnosed with eczema by the age of 6 months (cases) and 12 infants were not (controls). After conducting denaturating gradient gel electrophoresis (DGGE) of stool samples, we compared the microbial diversity of cases and controls using the number of electrophoretic bands and the Shannon index of diversity (H') as indicators.

Results: Control subjects had significantly greater fecal microbial diversity than children with eczema at ages 1 (mean H' for controls = 0.75 vs. 0.53 for cases, P = 0.01) and 4 months (mean H' for controls = 0.92 vs. 0.59 for cases, P = 0.02). The increase in diversity from 1 to 4 months of age was significant in controls (P = 0.04) but not in children who developed eczema by 6 months of age (P = 0.32).

Conclusion: Our findings suggest that reduced microbial diversity is associated with the development of eczema in early life.

No MeSH data available.


Related in: MedlinePlus