Limits...
Evolution of the aging brain transcriptome and synaptic regulation.

Loerch PM, Lu T, Dakin KA, Vann JM, Isaacs A, Geula C, Wang J, Pan Y, Gabuzda DH, Li C, Prolla TA, Yankner BA - PLoS ONE (2008)

Bottom Line: Many of these age-regulated neuronal genes are associated with synaptic function.Gene downregulation was not associated with overall neuronal or synaptic loss.Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.

ABSTRACT
Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD) and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4). However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.

Show MeSH

Related in: MedlinePlus

Reduced protein markers of inhibitory neurons in the aged human cortex.a. GAD1, calbindin-1, and somatostatin protein levels are significantly lower in the aged (71–91 yr; white) human cortex than in the young adult (24–35 yr; black) cortex, in agreement with microarray results. VIP expression is age-stable at the protein level. The neuronal markers β-tubulin-III and neurofilament-L are age-stable at the protein level, as is the synaptic protein synaptophysin. n = 15. The primary Western blot data are shown in Figure S2a. b. Calbindin-1, somatostatin, and VIP protein levels are age-stable in the mouse cortex, in agreement with the microarray results. Likewise, β-tubulin-III and synaptophysin do not change significantly with age. Attempts to probe for mouse GAD1 and neurofilament-L were not successful. n = 6. The primary Western blot data are shown in Figure S2b. In both a and b, the level of each protein was normalized to the level of actin. Values represent the mean±S.E.M. expressed as percent of the mean young value for each protein. * P<0.05 by Student's two-tailed t-test.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC2553198&req=5

pone-0003329-g006: Reduced protein markers of inhibitory neurons in the aged human cortex.a. GAD1, calbindin-1, and somatostatin protein levels are significantly lower in the aged (71–91 yr; white) human cortex than in the young adult (24–35 yr; black) cortex, in agreement with microarray results. VIP expression is age-stable at the protein level. The neuronal markers β-tubulin-III and neurofilament-L are age-stable at the protein level, as is the synaptic protein synaptophysin. n = 15. The primary Western blot data are shown in Figure S2a. b. Calbindin-1, somatostatin, and VIP protein levels are age-stable in the mouse cortex, in agreement with the microarray results. Likewise, β-tubulin-III and synaptophysin do not change significantly with age. Attempts to probe for mouse GAD1 and neurofilament-L were not successful. n = 6. The primary Western blot data are shown in Figure S2b. In both a and b, the level of each protein was normalized to the level of actin. Values represent the mean±S.E.M. expressed as percent of the mean young value for each protein. * P<0.05 by Student's two-tailed t-test.

Mentions: To determine whether reduced mRNA levels are associated with reduced protein levels in the aging brain, a subset of gene products expressed in GABAergic neurons was examined by quantitative Western blotting in cortical samples from young adult and aged humans and mice. The protein level of the major GABA biosynthetic enzyme in the brain, GAD1, was significantly reduced in the aging human cortex, as well as the levels of calbindin 1 and somatostatin, in agreement with the microarray data (Fig. 6a and Fig. S2a). The neuropeptide VIP did not show a significant age-related change at the protein level, in contrast to the age-related reduction in VIP mRNA. This difference may reflect limited sensitivity of the antibody used for Western blotting of VIP, or post-translational regulation of VIP levels. In contrast to aging human cortex, the aging mouse cortex did not exhibit altered levels of calbindin or somatostatin, which is also in agreement with the microarray data (Fig. 6b and Fig. S2b).


Evolution of the aging brain transcriptome and synaptic regulation.

Loerch PM, Lu T, Dakin KA, Vann JM, Isaacs A, Geula C, Wang J, Pan Y, Gabuzda DH, Li C, Prolla TA, Yankner BA - PLoS ONE (2008)

Reduced protein markers of inhibitory neurons in the aged human cortex.a. GAD1, calbindin-1, and somatostatin protein levels are significantly lower in the aged (71–91 yr; white) human cortex than in the young adult (24–35 yr; black) cortex, in agreement with microarray results. VIP expression is age-stable at the protein level. The neuronal markers β-tubulin-III and neurofilament-L are age-stable at the protein level, as is the synaptic protein synaptophysin. n = 15. The primary Western blot data are shown in Figure S2a. b. Calbindin-1, somatostatin, and VIP protein levels are age-stable in the mouse cortex, in agreement with the microarray results. Likewise, β-tubulin-III and synaptophysin do not change significantly with age. Attempts to probe for mouse GAD1 and neurofilament-L were not successful. n = 6. The primary Western blot data are shown in Figure S2b. In both a and b, the level of each protein was normalized to the level of actin. Values represent the mean±S.E.M. expressed as percent of the mean young value for each protein. * P<0.05 by Student's two-tailed t-test.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC2553198&req=5

pone-0003329-g006: Reduced protein markers of inhibitory neurons in the aged human cortex.a. GAD1, calbindin-1, and somatostatin protein levels are significantly lower in the aged (71–91 yr; white) human cortex than in the young adult (24–35 yr; black) cortex, in agreement with microarray results. VIP expression is age-stable at the protein level. The neuronal markers β-tubulin-III and neurofilament-L are age-stable at the protein level, as is the synaptic protein synaptophysin. n = 15. The primary Western blot data are shown in Figure S2a. b. Calbindin-1, somatostatin, and VIP protein levels are age-stable in the mouse cortex, in agreement with the microarray results. Likewise, β-tubulin-III and synaptophysin do not change significantly with age. Attempts to probe for mouse GAD1 and neurofilament-L were not successful. n = 6. The primary Western blot data are shown in Figure S2b. In both a and b, the level of each protein was normalized to the level of actin. Values represent the mean±S.E.M. expressed as percent of the mean young value for each protein. * P<0.05 by Student's two-tailed t-test.
Mentions: To determine whether reduced mRNA levels are associated with reduced protein levels in the aging brain, a subset of gene products expressed in GABAergic neurons was examined by quantitative Western blotting in cortical samples from young adult and aged humans and mice. The protein level of the major GABA biosynthetic enzyme in the brain, GAD1, was significantly reduced in the aging human cortex, as well as the levels of calbindin 1 and somatostatin, in agreement with the microarray data (Fig. 6a and Fig. S2a). The neuropeptide VIP did not show a significant age-related change at the protein level, in contrast to the age-related reduction in VIP mRNA. This difference may reflect limited sensitivity of the antibody used for Western blotting of VIP, or post-translational regulation of VIP levels. In contrast to aging human cortex, the aging mouse cortex did not exhibit altered levels of calbindin or somatostatin, which is also in agreement with the microarray data (Fig. 6b and Fig. S2b).

Bottom Line: Many of these age-regulated neuronal genes are associated with synaptic function.Gene downregulation was not associated with overall neuronal or synaptic loss.Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.

ABSTRACT
Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD) and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4). However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.

Show MeSH
Related in: MedlinePlus